Lebesgue's lemma

Last updated

In mathematics, Lebesgue's lemma is an important statement in approximation theory. It provides a bound for the projection error, controlling the error of approximation by a linear subspace based on a linear projection relative to the optimal error together with the operator norm of the projection.

Contents

Statement

Let (V, ||·||) be a normed vector space, U a subspace of V, and P a linear projector on U. Then for each v in V:

The proof is a one-line application of the triangle inequality: for any u in U, by writing vPv as (vu) + (uPu) + P(uv), it follows that

where the last inequality uses the fact that u = Pu together with the definition of the operator norm ||P||.

See also

Related Research Articles

The Hahn–Banach theorem is a central tool in functional analysis. It allows the extension of bounded linear functionals defined on a vector subspace of some vector space to the whole space, and it also shows that there are "enough" continuous linear functionals defined on every normed vector space to make the study of the dual space "interesting". Another version of the Hahn–Banach theorem is known as the Hahn–Banach separation theorem or the hyperplane separation theorem, and has numerous uses in convex geometry.

<span class="mw-page-title-main">Normed vector space</span> Vector space on which a distance is defined

In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers on which a norm is defined. A norm is a generalization of the intuitive notion of "length" in the physical world. If is a vector space over , where is a field equal to or to , then a norm on is a map , typically denoted by , satisfying the following four axioms:

  1. Non-negativity: for every ,.
  2. Positive definiteness: for every , if and only if is the zero vector.
  3. Absolute homogeneity: for every and ,
  4. Triangle inequality: for every and ,

In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue, although according to the Bourbaki group they were first introduced by Frigyes Riesz.

In mathematics, the operator norm measures the "size" of certain linear operators by assigning each a real number called its operator norm. Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces. Informally, the operator norm of a linear map is the maximum factor by which it "lengthens" vectors.

<span class="mw-page-title-main">Projection (linear algebra)</span> Idempotent linear transformation from a vector space to itself

In linear algebra and functional analysis, a projection is a linear transformation from a vector space to itself such that . That is, whenever is applied twice to any vector, it gives the same result as if it were applied once. It leaves its image unchanged. This definition of "projection" formalizes and generalizes the idea of graphical projection. One can also consider the effect of a projection on a geometrical object by examining the effect of the projection on points in the object.

In linear algebra and functional analysis, the min-max theorem, or variational theorem, or Courant–Fischer–Weyl min-max principle, is a result that gives a variational characterization of eigenvalues of compact Hermitian operators on Hilbert spaces. It can be viewed as the starting point of many results of similar nature.

In the field of mathematics, norms are defined for elements within a vector space. Specifically, when the vector space comprises matrices, such norms are referred to as matrix norms. Matrix norms differ from vector norms in that they must also interact with matrix multiplication.

In mathematics, the Lebesgue constants (depending on a set of nodes and of its size) give an idea of how good the interpolant of a function (at the given nodes) is in comparison with the best polynomial approximation of the function (the degree of the polynomials are fixed). The Lebesgue constant for polynomials of degree at most n and for the set of n + 1 nodes T is generally denoted by Λn(T ). These constants are named after Henri Lebesgue.

In mathematics, in the area of numerical analysis, Galerkin methods are named after the Soviet mathematician Boris Galerkin. They convert a continuous operator problem, such as a differential equation, commonly in a weak formulation, to a discrete problem by applying linear constraints determined by finite sets of basis functions.

The Remez algorithm or Remez exchange algorithm, published by Evgeny Yakovlevich Remez in 1934, is an iterative algorithm used to find simple approximations to functions, specifically, approximations by functions in a Chebyshev space that are the best in the uniform norm L sense. It is sometimes referred to as Remes algorithm or Reme algorithm.

Riesz's lemma is a lemma in functional analysis. It specifies conditions that guarantee that a subspace in a normed vector space is dense. The lemma may also be called the Riesz lemma or Riesz inequality. It can be seen as a substitute for orthogonality when the normed space is not an inner product space.

In mathematics, a Riesz space, lattice-ordered vector space or vector lattice is a partially ordered vector space where the order structure is a lattice.

In mathematics, more precisely in functional analysis, an energetic space is, intuitively, a subspace of a given real Hilbert space equipped with a new "energetic" inner product. The motivation for the name comes from physics, as in many physical problems the energy of a system can be expressed in terms of the energetic inner product. An example of this will be given later in the article.

Céa's lemma is a lemma in mathematics. Introduced by Jean Céa in his Ph.D. dissertation, it is an important tool for proving error estimates for the finite element method applied to elliptic partial differential equations.

In functional analysis, the dual norm is a measure of size for a continuous linear function defined on a normed vector space.

<span class="mw-page-title-main">Hilbert space</span> Type of topological vector space

In mathematics, Hilbert spaces allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.

In mathematics, low-rank approximation is a minimization problem, in which the cost function measures the fit between a given matrix and an approximating matrix, subject to a constraint that the approximating matrix has reduced rank. The problem is used for mathematical modeling and data compression. The rank constraint is related to a constraint on the complexity of a model that fits the data. In applications, often there are other constraints on the approximating matrix apart from the rank constraint, e.g., non-negativity and Hankel structure.

In mathematics, singular integral operators of convolution type are the singular integral operators that arise on Rn and Tn through convolution by distributions; equivalently they are the singular integral operators that commute with translations. The classical examples in harmonic analysis are the harmonic conjugation operator on the circle, the Hilbert transform on the circle and the real line, the Beurling transform in the complex plane and the Riesz transforms in Euclidean space. The continuity of these operators on L2 is evident because the Fourier transform converts them into multiplication operators. Continuity on Lp spaces was first established by Marcel Riesz. The classical techniques include the use of Poisson integrals, interpolation theory and the Hardy–Littlewood maximal function. For more general operators, fundamental new techniques, introduced by Alberto Calderón and Antoni Zygmund in 1952, were developed by a number of authors to give general criteria for continuity on Lp spaces. This article explains the theory for the classical operators and sketches the subsequent general theory.

In mathematics, nuclear operators are an important class of linear operators introduced by Alexander Grothendieck in his doctoral dissertation. Nuclear operators are intimately tied to the projective tensor product of two topological vector spaces (TVSs).

This is a glossary for the terminology in a mathematical field of functional analysis.

References