List of tropical cyclones

Last updated

This is a list of tropical cyclones , subdivided by basin. See the list of tropical cyclone records for individual records set by individual tropical cyclones.

Tropical cyclone Is a rotating storm system

A tropical cyclone is a rapidly rotating storm system characterized by a low-pressure center, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain. Depending on its location and strength, a tropical cyclone is referred to by different names, including hurricane, typhoon, tropical storm, cyclonic storm, tropical depression, and simply cyclone. A hurricane is a tropical cyclone that occurs in the Atlantic Ocean and northeastern Pacific Ocean, and a typhoon occurs in the northwestern Pacific Ocean; in the south Pacific or Indian Ocean, comparable storms are referred to simply as "tropical cyclones" or "severe cyclonic storms".

Oceanic basin Large geologic basins that are below sea level

In hydrology, an oceanic basin may be anywhere on Earth that is covered by seawater but geologically ocean basins are large geologic basins that are below sea level. Geologically, there are other undersea geomorphological features such as the continental shelves, the deep ocean trenches, and the undersea mountain ranges which are not considered to be part of the ocean basins; while hydrologically, oceanic basins include the flanking continental shelves and shallow, epeiric seas.

South Atlantic tropical cyclone

South Atlantic tropical cyclones are unusual weather events that occur in the Southern Hemisphere. Strong wind shear, which disrupts the formation of cyclones, as well as a lack of weather disturbances favorable for development in the South Atlantic Ocean make any strong tropical system extremely rare, and Hurricane Catarina in 2004 is the only recorded South Atlantic hurricane in history. South Atlantic storms have developed year-round, with activity peaking during the months from November through May in this basin. Since 2011, the Brazilian Navy Hydrographic Center has assigned names to tropical and subtropical systems in the western side of the basin, near Brazil, when they have sustained wind speeds of at least 65 km/h (40 mph), the generally accepted minimum sustained wind speed for a disturbance to be designated as a tropical storm in the North Atlantic basin. Below is a list of notable South Atlantic tropical and subtropical cyclones.

Pacific hurricane mature tropical cyclone that develops within the eastern and central Pacific Ocean

A Pacific hurricane is a mature tropical cyclone that develops within the eastern and central Pacific Ocean to the east of 180°W, north of the equator. For tropical cyclone warning purposes, the northern Pacific is divided into three regions: the eastern, central, and western, while the southern Pacific is divided into 2 sections, the Australian region and the southern Pacific basin between 160°E and 120°W. Identical phenomena in the western north Pacific are called typhoons. This separation between the two basins has a practical convenience, however, as tropical cyclones rarely form in the central north Pacific due to high vertical wind shear, and few cross the dateline.

An Australian region tropical cyclone is a non-frontal, low pressure system that has developed, within an environment of warm sea surface temperatures and little vertical wind shear aloft in either the Southern Indian Ocean or the South Pacific Ocean. Within the Southern Hemisphere there are officially three areas where tropical cyclones develop on a regular basis, these areas are the South-West Indian Ocean between Africa and 90°E, the Australian region between 90°E and 160°E and the South Pacific basin between 160°E and 120°W. The Australian region between 90°E and 160°E is officially monitored by the Australian Bureau of Meteorology, the Papua New Guinea National Weather Service and the Indonesian Agency for Meteorology, Climatology and Geophysics, while others like the Fiji Meteorological Service and the United States National Oceanic and Atmospheric Administration also monitor the basin. Each tropical cyclone year within this basin starts on 1 July and runs throughout the year, encompassing the tropical cyclone season which runs from 1 November and lasts until 30 April each season. Within the basin, most tropical cyclones have their origins within the South Pacific Convergence Zone or within the Northern Australian monsoon trough, both of which form an extensive area of cloudiness and are dominant features of the season. Within this region a tropical disturbance is classified as a tropical cyclone, when it has 10-minute sustained wind speeds of more than 65 km/h (35 mph), that wrap halfway around the low level circulation centre, while a severe tropical cyclone is classified when the maximum 10-minute sustained wind speeds are greater than 120 km/h (75 mph).

See also


Related Research Articles

Tropical cyclones and subtropical cyclones are named by various warning centers to provide ease of communication between forecasters and the general public regarding forecasts, watches, and warnings. The names are intended to reduce confusion in the event of concurrent storms in the same basin. Generally once storms produce sustained wind speeds of more than 33 knots, names are assigned in order from predetermined lists depending on which basin they originate. However, standards vary from basin to basin: some tropical depressions are named in the Western Pacific, while tropical cyclones must have a significant amount of gale-force winds occurring around the centre before they are named in the Southern Hemisphere.

Pacific typhoon climatology Wikimedia list article

The following is a list of Pacific typhoon seasons. The seasons are limited to the north of the equator between the 100th meridian east and the 180th meridian.

1976 Pacific typhoon season typhoon season in the Pacific Ocean

The 1976 Pacific typhoon season has no official bounds; it ran year-round in 1976, but most tropical cyclones tend to form in the northwestern Pacific Ocean between June and December. These dates conventionally delimit the period of each year when most tropical cyclones form in the northwestern Pacific Ocean.

1954 Pacific typhoon season typhoon season in the Pacific Ocean

The 1954 Pacific typhoon season has no official bounds; it ran year-round in 1954, but most tropical cyclones tend to form in the northwestern Pacific Ocean between June and December. These dates conventionally delimit the period of each year when most tropical cyclones form in the northwestern Pacific Ocean.

1952 Pacific typhoon season typhoon season in the Pacific Ocean

The 1952 Pacific typhoon season had no official bounds, but most tropical cyclones tend to form in the northwestern Pacific Ocean between June and December. These dates conventionally delimit the period of each year when most tropical cyclones form in the northwestern Pacific Ocean.

Tropical cyclone basins area of tropical cyclone formation

Traditionally, areas of tropical cyclone formation are divided into seven basins. These include the north Atlantic Ocean, the eastern and western parts of the northern Pacific Ocean, the southwestern Pacific, the southwestern and southeastern Indian Oceans, and the northern Indian Ocean. The western Pacific is the most active and the north Indian the least active. An average of 86 tropical cyclones of tropical storm intensity form annually worldwide, with 47 reaching hurricane/typhoon strength, and 20 becoming intense tropical cyclones, super typhoons, or major hurricanes.

Invest (meteorology) area of weather being monitored for cyclone development

An invest in meteorology is a designated area of disturbed weather that is being monitored for potential tropical cyclone development. Invests are designated by three separate United States forecast centers: the National Hurricane Center, the Central Pacific Hurricane Center, and the Joint Typhoon Warning Center.

The following outline is provided as an overview of and topical guide to tropical cyclones:

The practice of using names to identify tropical cyclones goes back several centuries, with storms named after places, saints or things they hit before the formal start of naming in each basin. Examples of such names are the 1928 Okeechobee hurricane and the 1938 New England hurricane. The system currently in place provides identification of tropical cyclones in a brief form that is easily understood and recognized by the public. The credit for the first usage of personal names for weather systems is given to the Queensland Government Meteorologist Clement Wragge, who named tropical cyclones and anticyclones between 1887 and 1907. This system of naming fell into disuse for several years after Wragge retired, until it was revived in the latter part of World War II for the Western Pacific. Over the following decades formal naming schemes were introduced for several tropical cyclone basins, including the North and South Atlantic, Eastern, Central, Western and Southern Pacific basins as well as the Australian region and Indian Ocean.

Tropical cyclones of 2010 were spread across seven oceanic basins in their respective seasons; the strongest of these tropical cyclones was Typhoon Megi (2010), which strengthened to a minimum barometric pressure of 885 mbar before striking the east coast of Luzon in the Philippines. Regional Specialized Meteorological Centers (RSMC) and Tropical Cyclone Warning Centers (TCWC) designated names to 70 systems worldwide, of which 46 occurred in the northern hemisphere while 21 developed in the southern hemisphere. The most active basin in 2010 was the North Atlantic, which documented 19 named systems, while the North Indian Ocean, despite only amounting to five named systems, was its basin's most active since 1998. Conversely, both the West Pacific typhoon and East Pacific hurricane seasons experienced the least number of cyclones reaching tropical storm intensity in recorded history, numbering 14 and 8, respectively. Activity across the southern hemisphere's three basins—South-West Indian, Australian, and South Pacific—was spread evenly, with each region recording seven named storms apiece. That hemisphere's strongest tropical cyclone was Cyclone Edzani, which bottomed out with a barometric pressure of 910 mbar in the South-West Indian Ocean.

Tropical cyclones in 2006 were spread across seven basins and their respective seasons;

The 2019 Pacific hurricane season is an upcoming event in the annual cycle of tropical cyclone formation, in which tropical cyclones form in the eastern Pacific Ocean. The season will officially begin on May 15 in the East Pacific Ocean, and on June 1 in the Central Pacific; they will both end on November 30. These dates conventionally delimit the period of each year when most tropical cyclones form in the Pacific basin. However, the formation of tropical cyclones is possible at any time of the year.

Tropical cyclones in 2015

Tropical cyclones in 2015 were spread out across seven different areas called basins; the strongest of these tropical cyclones was Hurricane Patricia, which strengthened to a minimum barometric pressure of 872 mbar before striking the east coast of Colima in Mexico. 133 tropical cyclones had formed this year to date. 92 tropical cyclones had been named by either a Regional Specialized Meteorological Center (RSMC) or a Tropical Cyclone Warning Center (TCWC).

Tropical cyclones in 2014

Tropical cyclones in 2014 were spread out across seven different areas called basins; the strongest of these tropical cyclones was Typhoon Vongfong, which strengthened to a minimum barometric pressure of 900 mbar before striking the east coast of Japan. 119 tropical cyclones had formed this year to date. 82 tropical cyclones had been named by either a Regional Specialized Meteorological Center (RSMC) or a Tropical Cyclone Warning Center (TCWC). The most active basin in 2014 was the Western Pacific, which documented 23 named systems, while the Eastern Pacific, despite only amounting to 22 named systems, was its basin's most active since 1992. Conversely, both the North Atlantic hurricane and North Indian Ocean cyclone seasons experienced the least number of cyclones reaching tropical storm intensity in recorded history, numbering 9 and 3, respectively. Activity across the southern hemisphere's three basins—South-West Indian, Australian, and South Pacific—was spread evenly, with each region recording seven named storms apiece.

Tropical cyclones in 2004 were spread out across seven different areas called basins; the strongest of these tropical cyclones was Cyclone Gafilo, which strengthened to a minimum barometric pressure of 895 mbar becomes the most intense tropical cyclone ever recorded in the South-West Indian Ocean before striking the east coast of Madagascar. 130 tropical cyclones had formed this year to date. 81 tropical cyclones had been named by either a Regional Specialized Meteorological Center (RSMC) or a Tropical Cyclone Warning Center (TCWC). The most active basin in 2004 was the Western Pacific, which documented 29 named systems, while the North Atlantic, despite only amounting to 15 named systems, was its basin's hyperactive season since 1995. Conversely, both the Eastern Pacific hurricane and North Indian Ocean cyclone seasons experienced the least number of cyclones reaching tropical storm intensity in recorded history, numbering 12 and 4, respectively. Activity across the southern hemisphere's three basins—South-West Indian, Australian, and South Pacific—was spread evenly, with each region recording seven named storms apiece.

Tropical cyclones in 2012

Tropical cyclones in 2012 were spread out across seven different areas called basins; the strongest tropical cyclone was Typhoon Sanba strengthened to a minimum barometric pressure of 900 mbar before striking South Korea. 132 tropical cyclones had formed this year to date. 88 tropical cyclones had been named by either a Regional Specialized Meteorological Center (RSMC) or a Tropical Cyclone Warning Center (TCWC). The most active basin in the year was the Western Pacific, which documented 25 named systems, while the North Atlantic Pacific, despite only amounting to 19 named systems, was its basin's hyperactive since 2010 becoming the third-most active season on record. Conversely, the Eastern Pacific hurricane season experienced the average number of cyclones reaching tropical storm intensity, numbering 17 respectively. The least tropical cyclone season was North Indian Ocean had a late start, with the first system forming in October. Activity across the southern hemisphere's three basins—South-West Indian, Australian, and South Pacific—was spread evenly, with each region recording seven named storms apiece.