Outline of tropical cyclones

Last updated

The following outline is provided as an overview of and topical guide to tropical cyclones:

An outline, also called a hierarchical outline, is a list arranged to show hierarchical relationships and is a type of tree structure. An outline is used to present the main points or topics (terms) of a given subject. Each item in an outline may be divided into additional sub-items. If an organizational level in an outline is to be sub-divided, it shall have at least two subcategories, as advised by major style manuals in current use. An outline may be used as a drafting tool of a document, or as a summary of the content of a document or of the knowledge in an entire field. It is not to be confused with the general context of the term "outline", which a summary or overview of a subject, presented verbally or written in prose. The outlines described in this article are lists, and come in several varieties.

Contents

Tropical cyclone storm system characterized by a large low-pressure center and numerous thunderstorms that produce strong winds and heavy rain. Tropical cyclones strengthen when water evaporated from the ocean is released as the saturated air rises, resulting in condensation of water vapor contained in the moist air. They are fueled by a different heat mechanism than other cyclonic windstorms such as nor'easters, European windstorms, and polar lows. The characteristic that separates tropical cyclones from other cyclonic systems is that at any height in the atmosphere, the center of a tropical cyclone will be warmer than its surroundings; a phenomenon called "warm core" storm systems.

Tropical cyclone Is a rotating storm system

A tropical cyclone is a rapidly rotating storm system characterized by a low-pressure center, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain. Depending on its location and strength, a tropical cyclone is referred to by different names, including hurricane, typhoon, tropical storm, cyclonic storm, tropical depression, and simply cyclone. A hurricane is a tropical cyclone that occurs in the Atlantic Ocean and northeastern Pacific Ocean, and a typhoon occurs in the northwestern Pacific Ocean; in the south Pacific or Indian Ocean, comparable storms are referred to simply as "tropical cyclones" or "severe cyclonic storms".

Storm any disturbed state of an astronomical bodys atmosphere

A storm is any disturbed state of an environment or in an astronomical body's atmosphere especially affecting its surface, and strongly implying severe weather. It may be marked by significant disruptions to normal conditions such as strong wind, tornadoes, hail, thunder and lightning, heavy precipitation, heavy freezing rain, strong winds, or wind transporting some substance through the atmosphere as in a dust storm, blizzard, sandstorm, etc.

Cyclone large scale air mass that rotates around a strong center of low pressure

In meteorology, a cyclone is a large scale air mass that rotates around a strong center of low atmospheric pressure. Cyclones are characterized by inward spiraling winds that rotate about a zone of low pressure. The largest low-pressure systems are polar vortices and extratropical cyclones of the largest scale. Warm-core cyclones such as tropical cyclones and subtropical cyclones also lie within the synoptic scale. Mesocyclones, tornadoes and dust devils lie within smaller mesoscale. Upper level cyclones can exist without the presence of a surface low, and can pinch off from the base of the tropical upper tropospheric trough during the summer months in the Northern Hemisphere. Cyclones have also been seen on extraterrestrial planets, such as Mars and Neptune. Cyclogenesis is the process of cyclone formation and intensification. Extratropical cyclones begin as waves in large regions of enhanced mid-latitude temperature contrasts called baroclinic zones. These zones contract and form weather fronts as the cyclonic circulation closes and intensifies. Later in their life cycle, extratropical cyclones occlude as cold air masses undercut the warmer air and become cold core systems. A cyclone's track is guided over the course of its 2 to 6 day life cycle by the steering flow of the subtropical jet stream.

Nature of tropical cyclones

Tropical cyclones can be described as all of the following:

Natural disaster Major adverse event resulting from natural processes of the Earth

A natural disaster is a major adverse event resulting from natural processes of the Earth; examples are floods, hurricanes, tornadoes, volcanic eruptions, earthquakes, tsunamis, and other geologic processes. A natural disaster can cause loss of life or damage property, and typically leaves some economic damage in its wake, the severity of which depends on the affected population's resilience, or ability to recover and also on the infrastructure available.

Types of tropical cyclones

Cumulative graph of tropical cyclones in the eastern Pacific East pacific tc climatology.png
Cumulative graph of tropical cyclones in the eastern Pacific
Subtropical cyclone

A subtropical cyclone is a weather system that has some characteristics of a tropical and an extratropical cyclone.

Extratropical cyclone type of cyclone

Extratropical cyclones, sometimes called mid-latitude cyclones or wave cyclones, are low-pressure areas which, along with the anticyclones of high-pressure areas, drive the weather over much of the Earth. Extratropical cyclones are capable of producing anything from cloudiness and mild showers to heavy gales, thunderstorms, blizzards, and tornadoes. These types of cyclones are defined as large scale (synoptic) low pressure weather systems that occur in the middle latitudes of the Earth. In contrast with tropical cyclones, extratropical cyclones produce rapid changes in temperature and dew point along broad lines, called weather fronts, about the center of the cyclone.

Pacific hurricane mature tropical cyclone that develops within the eastern and central Pacific Ocean

A Pacific hurricane is a mature tropical cyclone that develops within the eastern and central Pacific Ocean to the east of 180°W, north of the equator. For tropical cyclone warning purposes, the northern Pacific is divided into three regions: the eastern, central, and western, while the southern Pacific is divided into 2 sections, the Australian region and the southern Pacific basin between 160°E and 120°W. Identical phenomena in the western north Pacific are called typhoons. This separation between the two basins has a practical convenience, however, as tropical cyclones rarely form in the central north Pacific due to high vertical wind shear, and few cross the dateline.

Tropical cyclone observations

Saffir–Simpson scale
CategoryWind speeds
(for 1-minute maximum sustained winds)
m/s knots (kn) mph km/h
Five ≥ 70 m/s   ≥ 137 kn   ≥ 157 mph   ≥ 252 km/h  
Four  58–70 m/s    113–136 kn    130–156 mph    209–251 km/h  
Three  50–58 m/s    96–112 kn    111–129 mph    178–208 km/h  
Two  43–49 m/s    83–95 kn    96–110 mph    154–177 km/h  
One  33–42 m/s    64–82 kn    74–95 mph    119–153 km/h  
Related classifications
(for 1-minute maximum sustained winds)
Tropical storm  18–32 m/s    34–63 kn    39–73 mph    63–118 km/h  
Tropical depression  ≤ 17 m/s    ≤ 33 kn    ≤ 38 mph    ≤ 62 km/h  

Tropical cyclones are unofficially ranked on one of five tropical cyclone intensity scales, according to their maximum sustained winds and which tropical cyclone basin(s) they are located in. Only a few scales of classifications are used officially by the meteorological agencies monitoring the tropical cyclones, but some alternative scales also exist, such as accumulated cyclone energy, the Power Dissipation Index, the Integrated Kinetic Energy Index, and the Hurricane Severity Index.

Accumulated cyclone energy (ACE) is a measure used by various agencies including the National Oceanic and Atmospheric Administration (NOAA) and the India Meteorological Department to express the activity of individual tropical cyclones and entire tropical cyclone seasons. It uses an approximation of the wind energy used by a tropical system over its lifetime and is calculated every six hours. The ACE of a season is the sum of the ACEs for each storm and takes into account the number, strength, and duration of all the tropical storms in the season. The highest ACE calculated for a single storm is 82, for Hurricane/Typhoon Ioke in 2006.

The Hurricane Severity Index is a hurricane rating system which defines the strength and destructive capability of a storm. The HSI uses equations which incorporate the intensity of the winds and the size of the area covered by the winds. The HSI attempts to demonstrate that two hurricanes of similar intensity may have different destructive capability due to variances in size, and furthermore that a less intense, but very large hurricane, may in fact be more destructive than a smaller, more intense hurricane. HSI was developed by a private company program in competition with the National Weather Service's Accumulated cyclone energy index.

Forecasting

Tropical cyclone history

Tropical cyclone seasons

Specific tropical cyclones

Hurricane Isabel Hurricane Isabel from ISS.jpg
Hurricane Isabel

See also

Related Research Articles

Tropical cyclones and subtropical cyclones are named by various warning centers to provide ease of communication between forecasters and the general public regarding forecasts, watches, and warnings. The names are intended to reduce confusion in the event of concurrent storms in the same basin. Generally once storms produce sustained wind speeds of more than 33 knots, names are assigned in order from predetermined lists depending on which basin they originate. However, standards vary from basin to basin: some tropical depressions are named in the Western Pacific, while tropical cyclones must have a significant amount of gale-force winds occurring around the centre before they are named in the Southern Hemisphere.

Joint Typhoon Warning Center

The Joint Typhoon Warning Center (JTWC) is a joint United States Navy – United States Air Force command located in Pearl Harbor, Hawaii. The JTWC is responsible for the issuing of tropical cyclone warnings in the North-West Pacific Ocean, South Pacific Ocean, and Indian Ocean for all branches of the U.S. Department of Defense and other U.S. government agencies. Their warnings are intended for the protection of primarily military ships and aircraft as well as military installations jointly operated with other countries around the world.

Typhoon type of tropical cyclone when is located i northwest Pacific. Classified by JMA typhoons wind scale and JTWC typhoons wind scale

A typhoon is a mature tropical cyclone that develops between 180° and 100°E in the Northern Hemisphere. This region is referred to as the Northwestern Pacific Basin, and is the most active tropical cyclone basin on Earth, accounting for almost one-third of the world's annual tropical cyclones. For organizational purposes, the northern Pacific Ocean is divided into three regions: the eastern, central, and western. The Regional Specialized Meteorological Center (RSMC) for tropical cyclone forecasts is in Japan, with other tropical cyclone warning centers for the northwest Pacific in Hawaii, the Philippines and Hong Kong. While the RSMC names each system, the main name list itself is coordinated among 18 countries that have territories threatened by typhoons each year A hurricane is a storm that occurs in the Atlantic Ocean or the northeastern Pacific Ocean, a typhoon occurs in the northwestern Pacific Ocean, and a tropical cyclone occurs in the South Pacific or the Indian Ocean.

Tropical cyclone basins area of tropical cyclone formation

Traditionally, areas of tropical cyclone formation are divided into seven basins. These include the north Atlantic Ocean, the eastern and western parts of the northern Pacific Ocean, the southwestern Pacific, the southwestern and southeastern Indian Oceans, and the northern Indian Ocean. The western Pacific is the most active and the north Indian the least active. An average of 86 tropical cyclones of tropical storm intensity form annually worldwide, with 47 reaching hurricane/typhoon strength, and 20 becoming intense tropical cyclones, super typhoons, or major hurricanes.

An Australian region tropical cyclone is a non-frontal, low pressure system that has developed, within an environment of warm sea surface temperatures and little vertical wind shear aloft in either the Southern Indian Ocean or the South Pacific Ocean. Within the Southern Hemisphere there are officially three areas where tropical cyclones develop on a regular basis, these areas are the South-West Indian Ocean between Africa and 90°E, the Australian region between 90°E and 160°E and the South Pacific basin between 160°E and 120°W. The Australian region between 90°E and 160°E is officially monitored by the Australian Bureau of Meteorology, the Papua New Guinea National Weather Service and the Indonesian Agency for Meteorology, Climatology and Geophysics, while others like the Fiji Meteorological Service and the United States National Oceanic and Atmospheric Administration also monitor the basin. Each tropical cyclone year within this basin starts on 1 July and runs throughout the year, encompassing the tropical cyclone season which runs from 1 November and lasts until 30 April each season. Within the basin, most tropical cyclones have their origins within the South Pacific Convergence Zone or within the Northern Australian monsoon trough, both of which form an extensive area of cloudiness and are dominant features of the season. Within this region a tropical disturbance is classified as a tropical cyclone, when it has 10-minute sustained wind speeds of more than 65 km/h (35 mph), that wrap halfway around the low level circulation centre, while a severe tropical cyclone is classified when the maximum 10-minute sustained wind speeds are greater than 120 km/h (75 mph).

South-West Indian Ocean tropical cyclone type of tropical cyclone located in South West Indian Ocean and measured by Météo-France La Reunion scale

In the south-west Indian Ocean, tropical cyclones form south of the equator and west of 90° E to the coast of Africa.

Invest (meteorology) area of weather being monitored for cyclone development

An invest in meteorology is a designated area of disturbed weather that is being monitored for potential tropical cyclone development. Invests are designated by three separate United States forecast centers: the National Hurricane Center, the Central Pacific Hurricane Center, and the Joint Typhoon Warning Center.

The practice of using names to identify tropical cyclones goes back several centuries, with storms named after places, saints or things they hit before the formal start of naming in each basin. Examples of such names are the 1928 Okeechobee hurricane and the 1938 New England hurricane. The system currently in place provides identification of tropical cyclones in a brief form that is easily understood and recognized by the public. The credit for the first usage of personal names for weather systems is given to the Queensland Government Meteorologist Clement Wragge, who named tropical cyclones and anticyclones between 1887 and 1907. This system of naming fell into disuse for several years after Wragge retired, until it was revived in the latter part of World War II for the Western Pacific. Over the following decades formal naming schemes were introduced for several tropical cyclone basins, including the North and South Atlantic, Eastern, Central, Western and Southern Pacific basins as well as the Australian region and Indian Ocean.

Tropical cyclones of 2010 were spread across seven oceanic basins in their respective seasons; the strongest of these tropical cyclones was Typhoon Megi, which strengthened to a minimum barometric pressure of 885 mbar before striking the east coast of Luzon in the Philippines. Regional Specialized Meteorological Centers (RSMC) and Tropical Cyclone Warning Centers (TCWC) designated names to 70 systems worldwide, of which 46 occurred in the northern hemisphere while 21 developed in the southern hemisphere. The most active basin in 2010 was the North Atlantic, which documented 19 named systems, while the North Indian Ocean, despite only amounting to five named systems, was its basin's most active since 1998. Conversely, both the West Pacific typhoon and East Pacific hurricane seasons experienced the least number of cyclones reaching tropical storm intensity in recorded history, numbering 14 and 8, respectively. Activity across the southern hemisphere's three basins—South-West Indian, Australian, and South Pacific—was spread evenly, with each region recording seven named storms apiece. That hemisphere's strongest tropical cyclone was Cyclone Edzani, which bottomed out with a barometric pressure of 910 mbar in the South-West Indian Ocean.

Tropical cyclones in 2015

Tropical cyclones in 2015 were spread out across seven different areas called basins; the strongest of these tropical cyclones was Hurricane Patricia, which strengthened to a minimum barometric pressure of 872 mbar before striking the east coast of Colima in Mexico. 133 tropical cyclones had formed this year to date. 92 tropical cyclones had been named by either a Regional Specialized Meteorological Center (RSMC) or a Tropical Cyclone Warning Center (TCWC).

Tropical cyclones in 2019 are spread out across seven different areas called basins and the Mediterranean Sea. Currently, 39 systems have formed during the year to date. 24 tropical cyclones have been named by either a Regional Specialized Meteorological Center (RSMC) or a Tropical Cyclone Warning Center (TCWC).

Tropical cyclones in 2014

Tropical cyclones in 2014 were spread out across seven different areas called basins; the strongest of these tropical cyclones was Typhoon Vongfong, which strengthened to a minimum barometric pressure of 900 mbar before striking the east coast of Japan. 119 tropical cyclones had formed this year to date. 82 tropical cyclones had been named by either a Regional Specialized Meteorological Center (RSMC) or a Tropical Cyclone Warning Center (TCWC). The most active basin in 2014 was the Western Pacific, which documented 23 named systems, while the Eastern Pacific, despite only amounting to 22 named systems, was its basin's most active since 1992. Conversely, both the North Atlantic hurricane and North Indian Ocean cyclone seasons experienced the least number of cyclones reaching tropical storm intensity in recorded history, numbering 9 and 3, respectively. Activity across the southern hemisphere's three basins—South-West Indian, Australian, and South Pacific—was spread evenly, with each region recording seven named storms apiece.

Tropical cyclones in 2004 were spread out across seven different areas called basins; the strongest of these tropical cyclones was Cyclone Gafilo, which strengthened to a minimum barometric pressure of 895 mbar becomes the most intense tropical cyclone ever recorded in the South-West Indian Ocean before striking the east coast of Madagascar. 130 tropical cyclones had formed this year to date. 81 tropical cyclones had been named by either a Regional Specialized Meteorological Center (RSMC) or a Tropical Cyclone Warning Center (TCWC). The most active basin in 2004 was the Western Pacific, which documented 29 named systems, while the North Atlantic, despite only amounting to 15 named systems, was its basin's hyperactive season since 1995. Conversely, both the Eastern Pacific hurricane and North Indian Ocean cyclone seasons experienced the least number of cyclones reaching tropical storm intensity in recorded history, numbering 12 and 4, respectively. Activity across the southern hemisphere's three basins—South-West Indian, Australian, and South Pacific—was spread evenly, with each region recording seven named storms apiece.

Tropical cyclones in 2012

Tropical cyclones in 2012 were spread out across seven different areas called basins; the strongest tropical cyclone was Typhoon Sanba strengthened to a minimum barometric pressure of 900 mbar before striking South Korea. 132 tropical cyclones had formed this year to date. 88 tropical cyclones had been named by either a Regional Specialized Meteorological Center (RSMC) or a Tropical Cyclone Warning Center (TCWC). The most active basin in the year was the Western Pacific, which documented 25 named systems, while the North Atlantic Pacific, despite only amounting to 19 named systems, was its basin's hyperactive since 2010 becoming the third-most active season on record. Conversely, the Eastern Pacific hurricane season experienced the average number of cyclones reaching tropical storm intensity, numbering 17 respectively. The least tropical cyclone season was North Indian Ocean had a late start, with the first system forming in October. Activity across the southern hemisphere's three basins—South-West Indian, Australian, and South Pacific—was spread evenly, with each region recording seven named storms apiece.

References

    Regional Specialized Meteorological Centres
    Tropical Cyclone Warning Centers