This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
|
In the Indian Ocean north of the equator, tropical cyclones can form throughout the year on either side of the Indian subcontinent, although most frequently between April and June, and between October and December.
The North Indian Ocean is the least active official basin, contributing only seven percent of the world's tropical cyclones. However the basin has produced some of the deadliest cyclones in the world, since they strike over very densely populated areas. [1] The Regional Specialized Meteorological Centre (RSMC) is the India Meteorological Department (IMD) and it is responsible to monitor the basin, issues warning and name the storms. [2]
The basin is divided into two sub-basins – the Bay of Bengal and the Arabian Sea. [3]
The Bay of Bengal, located in the northeast of the Indian Ocean. The basin is abbreviated BOB by the India Meteorological Department (IMD). [4] The United States's Joint Typhoon Warning Center unofficially designates as B to classify storms formed in the Bay of Bengal. [5] The Bay of Bengal's coast is shared among India, Bangladesh, Myanmar, Sri Lanka and western part of Thailand. [6] This sub-basin is the most active and produces some of the deadliest cyclones of all time. [7] The most intense cyclone in the bay was the 1999 Odisha cyclone. [8]
The Arabian Sea is a sea located in the northwest of the Indian Ocean. Tropical cyclones in the basin are abbreviated ARB by the India Meteorological Department (IMD). [4] The United States's Joint Typhoon Warning Center unofficially designates as A to classify storms formed in the Arabian Sea. [9] The Arabian Sea's coast is shared among Pakistan, India, Yemen, Oman, UAE, Iran, Sri Lanka, Maldives and Somalia. [10] Monsoons are characteristic of the Arabian Sea and responsible for the yearly cycling of its waters. In summer, strong winds blow from the southwest to the northeast, bringing rain to the Indian subcontinent. Cyclones are less frequent in the Arabian Sea, but the basin can produce strong tropical cyclones. [10] Cyclone Gonu was the strongest and the costliest recorded tropical cyclone in the basin. [11]
The systematic scientific studies of tropical systems in the Bay of Bengal and Arabian Sea was started during the 19th century by Henry Piddington. [12] Piddington utilised meteorological logs of vessels that navigated the seas and published a series of memoirs, in the Journal of the Asiatic Society of Bengal between 1839 and 1858. [12] These memoirs gave accounts and tracks of individual storms in the Bay of Bengal and the Arabian Sea. [12]
During the 2004 post monsoon season the IMD started to name tropical cyclones within the basin, with the first one named Cyclone Onil during September 2004. [13] During 2015 a modification to the intensity scale took place, with the IMD and WMO calling a system with 3-minute maximum sustained wind speeds between 90 knots (165 km/h; 105 mph) and 120 knots (220 km/h; 140 mph) an extremely severe cyclonic storm. [14]
A study analysing the spring season of tropical cyclones in the Bay of Bengal found increases in both pre-monsoon precipitation and tropical cyclone intensity as a result of enhanced large-scale monsoon circulation after 1979. The deepened monsoon trough in the Bay of Bengal not only affects cyclone frequency and timing, but also acts to direct more cyclones towards Myanmar. Increased anthropogenic aerosols likely contributed to such a regional climate change. [15]
On average only five to six tropical cyclones form in the basin each year. Tropical cyclones form in the months of March to June and October to December, with peaks at May and November. Most of these storms form in the Bay of Bengal: either in the southeastern Bay of Bengal, in the Andaman Sea, or as a remnant of a typhoon from the South China Sea, and a few in the Arabian Sea. [8] High sea surface temperatures and humidity makes the bays more favourable to tropical cyclone development. [16] There are many tropical cyclones in the West Pacific; this may be another reason for increased[ clarification needed ] tropical cyclogenesis in the Bay, as it shares a fair portion of the increased quota of ACE. Meanwhile, the storms in the Arabian Sea mostly form over south-eastern part of the Arabian Sea or a remnant of a tropical cyclone from the Bay of Bengal, however the frequency of cyclogenesis in the Arabian Sea is generally less, due to cooler sea surface temperature and high wind shear. [8] However a strong positive Indian Ocean Dipole may cause an increase of tropical cyclogenesis than usual[ clarification needed ] which was seen in the 2019 season. [17] Very few tropical cyclones develop in the months of June to September (Monsoon months) because of high vertical wind shear. These storms form in the Bay of Bengal and peak as depressions or deep depressions before making landfall in Odisha or West Bengal. Another reason is the low life span in the sea[ clarification needed ] which also avoids the intensification of these low-pressure systems. [8]
Most of the storms move in a north-westerly direction and starts curving either towards southwest or northeast. There's a higher frequency of recurving towards northeast rather going southwest. In the Arabian Sea these storms mostly move in north-westerly direction targeting the Arabian Peninsula, however in some case these storm moves north-eastwards after crossing the 15°N latitude and strikes the Gujarati coast. In the Bay of Bengal, storms generally moves north-westwards until reaching the east coast and then moves north-eastwards. [18]
Intensification probability is maximum in the months of April, May and November in case of a depression becoming a cyclonic storm and severe cyclonic storm. More than half of the depressions intensify into a storm and a quarter intensify into a cyclone in these months. [19]
In the Arabian Sea, most storms dissipate offshore without making landfall, but a significant number of tropical cyclones also impact the west coast, particularly the states of Gujarat and Maharashtra. The remaining 11 percent makes landfall in either the Arabian Peninsula, Horn of Africa or Pakistan. [20] In rare cases, some storms make landfall in Iran, like Cyclone Gonu did in 2007. [21] Other than Gonu, two storms: Cyclone Yemyin and Kyarr made some or major impact in Iran. [22] [23]
In the Bay of Bengal, most of the storms strikes either the Indian states of Odisha or West Bengal and a significant number of storms hit the states of Andhra Pradesh and Tamil Nadu. 30 percent of the cyclones strike the countries of Bangladesh, Sri Lanka and Myanmar while the remaining 13 percent just dissipates off shore without making landfall. [20]
After a series of devastating cyclones in 2018, rising number of cyclones in the Arabian Sea in 2019 and a rising trend of rapid intensification in 2020 and 2021, many climatologists agree that climate change have caused these activities. On average, five cyclonic storms occur every year in the Arabian Sea. However, in 2019 eight cyclonic storms formed, becoming the record highest number of tropical cyclones in the sub-basin, which was tied with the 1902 season. [24] [25] Research has found that in recent decades the sea surface temperatures has risen up by 1.2–1.4 °C (2.2–2.5 °F) in the Arabian Sea. [25] During Cyclone Amphan’s rapid intensification, sea surface temperatures were as high as 33 °C (91 °F) in the Bay of Bengal, and parts of the Arabian Sea reached 32 °C (90 °F) before the formation of Cyclone Nisarga. [26] According to the Union Ministry of Earth and Science, the frequency of very severe cyclonic storms has risen up by one per decade in last two decades, despite the decrease of the overall tropical cyclone frequency in the same period. [25] Higher temperatures caused the cyclones to become more powerful and lead to tropical cyclone formation faster. Rising sea level also caused higher storm surge. [26] Researchers also predict that cyclones will be deadlier and stronger as the trend of warming sea surface temperatures continue. Rising sea levels also may cause severe flooding, strong storm surge and inundation of coastal towns. [26]
10 20 30 40 50 60 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
|
Year | D | CS | SCS | Notes |
---|---|---|---|---|
1890 | 10 | 4 | 1 | |
1891 | 13 | 4 | 3 | Total includes 1 Land Severe Cyclonic Storm |
1892 | 12 | 7 | 2 | |
1893 | 12 | 10 | 4 | |
1894 | 12 | 6 | 0 | |
1895 | 11 | 5 | 4 | |
1896 | 10 | 8 | 3 | |
1897 | 12 | 6 | 8 | |
1898 | 13 | 7 | 3 | |
1899 | 7 | 3 | 0 | |
Total | 112 | 60 | 28 | |
References [27] |
Year | D | CS | SCS | Strongest storm | Deaths | Damage (USD) | Notes |
---|---|---|---|---|---|---|---|
1900 | 10 | 3 | 1 | ||||
1901 | 6 | 3 | 2 | ||||
1902 | 13 | 7 | 5 | ||||
1903 | 14 | 8 | 2 | ||||
1904 | 9 | 4 | 0 | ||||
1905 | 10 | 6 | 0 | ||||
1906 | 11 | 7 | 1 | ||||
1907 | 15 | 8 | 4 | ||||
1908 | 9 | 6 | 1 | ||||
1909 | 8 | 8 | 4 | ||||
Total | 105 | 60 | 20 | ||||
References [27] |
Year | D | CS | SCS | Strongest storm | Deaths | Damage (USD) | Notes |
---|---|---|---|---|---|---|---|
1910 | 6 | 5 | 2 | ||||
1911 | 7 | 5 | 4 | ||||
1912 | 9 | 6 | 2 | ||||
1913 | 10 | 6 | 2 | ||||
1914 | 8 | 4 | 2 | ||||
1915 | 9 | 6 | 0 | ||||
1916 | 14 | 8 | 5 | ||||
1917 | 10 | 3 | 1 | ||||
1918 | 11 | 5 | 0 | ||||
1919 | 11 | 6 | 3 | ||||
Total | 95 | 54 | 21 | ||||
References [27] |
Year | D | CS | SCS | Strongest storm | Deaths | Damage (USD) | Notes |
---|---|---|---|---|---|---|---|
1920 | 9 | 5 | 0 | ||||
1921 | 10 | 4 | 1 | ||||
1922 | 13 | 6 | 6 | ||||
1923 | 16 | 4 | 3 | ||||
1924 | 13 | 6 | 0 | ||||
1925 | 20 | 7 | 3 | ||||
1926 | 13 | 10 | 3 | ||||
1927 | 18 | 7 | 2 | ||||
1928 | 13 | 7 | 0 | ||||
1929 | 15 | 6 | 0 | ||||
Total | 140 | 62 | 18 | ||||
References [27] |
Year | D | CS | SCS | Strongest storm | Deaths | Damage (USD) | Notes |
---|---|---|---|---|---|---|---|
1930 | 14 | 10 | 1 | ||||
1931 | 11 | 5 | 1 | ||||
1932 | 14 | 6 | 2 | ||||
1933 | 16 | 8 | 3 | ||||
1934 | 16 | 5 | 0 | ||||
1935 | 15 | 6 | 2 | ||||
1936 | 18 | 6 | 3 | VSCS Two | 293 | $75,000 | |
1937 | 19 | 6 | 2 | ||||
1938 | 10 | 4 | 4 | ||||
1939 | 19 | 7 | 3 | ||||
Total | 152 | 63 | 21 | ||||
References [27] [28] |
Year | D | CS | SCS | Strongest storm | Deaths | Damage (USD) | Notes |
---|---|---|---|---|---|---|---|
1940 | 16 | 8 | 5 | ||||
1941 | 19 | 8 | 4 | ||||
1942 | 14 | 5 | 2 | ||||
1943 | 14 | 7 | 1 | ||||
1944 | 19 | 8 | 2 | ||||
1945 | 15 | 3 | 2 | ||||
1946 | 17 | 5 | 1 | ||||
1947 | 18 | 4 | 2 | ||||
1948 | 18 | 6 | 3 | ||||
1949 | 12 | 1 | 1 | ||||
Total | 162 | 55 | 23 | ||||
References [27] |
Year | D | CS | SCS | Strongest storm | Deaths | Damage (USD) | Notes |
---|---|---|---|---|---|---|---|
1950 | 16 | 4 | 0 | SCS Sixteen | Unknown | Unknown | |
1951 | 15 | 4 | 2 | SCS Fifteen | Unknown | Unknown | |
1952 | 17 | 4 | 2 | ||||
1953 | 10 | 1 | 1 | ||||
1954 | 14 | 1 | 0 | ||||
1955 | 13 | 6 | 2 | ||||
1956 | 14 | 4 | 2 | ||||
1957 | 7 | 4 | 2 | ||||
1958 | 12 | 5 | 2 | ||||
1959 | 16 | 6 | 3 | ||||
Total | 134 | 39 | 16 | Unknown | Unknown | ||
References [27] |
Year | D | CS | SCS | Strongest storm | Deaths | Damage (USD) | Notes |
---|---|---|---|---|---|---|---|
1960 | 15 | 5 | 3 | VSCS Ten | 20,299 | >$9.4 million | Vast majority of the fatalities resulted from two cyclones striking East Pakistan three weeks apart |
1961 | 18 | 5 | 4 | SCS Winnie | 11,525 | Unknown | Three land depressions developed this season |
1962 | 13 | 5 | 3 | VSCS Twelve | 769 | $34.5 million | Deadliest storm, Harriet, crossed over from the Western Pacific |
1963 | 17 | 6 | 4 | SuCS Three | 11,735 | Unknown | |
1964 | 16 | 7 | 5 | SuCS "Rameswaram" | >1,827 | >$150 million | |
1965 | 14 | 6 | 4 | ||||
1966 | 18 | 8 | 6 | ||||
1967 | 15 | 6 | 4 | ||||
1968 | 13 | 7 | 4 | SuCS "Burma" | |||
1969 | 14 | 6 | 1 | ESCS Twelve | |||
Total | 153 | 61 | 38 | Three | >47,000 | >$193.9 million | |
References [27] |
Year | D | CS | SCS | Strongest storm | Deaths | Damage (USD) | Notes |
---|---|---|---|---|---|---|---|
1970 | 15 | 7 | 3 | ESCS "Bhola" | 300,000-500,000 | 86.4 million | The Bhola cyclone is the deadliest tropical cyclone recorded worldwide |
1971 | 15 | 7 | 6 | ESCS "Odisha" | |||
1972 | 18 | 7 | 6 | ESCS 09B | |||
1973 | 16 | 6 | 3 | SCS 14B | |||
1974 | 12 | 7 | 3 | VSCS 06B | |||
1975 | 20 | 7 | 4 | ESCS 02A | |||
1976 | 14 | 10 | 7 | ESCS 02A | |||
1977 | 18 | 5 | 5 | SuCS "Andhra Pradesh" | up to 50,000 | $192 million | Devastated Krishna Delta area in Andhra Pradesh |
1978 | 14 | 5 | 3 | SuCS "Sri Lanka" | 1,000+ | ||
1979 | 11 | 5 | 4 | ESCS 01B | |||
Total | 153 | 66 | 44 | "Andhra Pradesh" | >800,000 | >$278.4 million | |
References [27] |
Year | D | DD | CS | SCS | VSCS | ESCS | SuCS | Strongest storm | Deaths | Damages (USD) | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|
1980 | 14 | 14 | 5 | 0 | 0 | 0 | 0 | CS BOB 02 | |||
1981 | 12 | 12 | 5 | 3 | 3 | 0 | 0 | VSCS BOB 03 | |||
1982 | 19 | 11 | 8 | 5 | 3 | 3 | 0 | ESCS BOB 01 | |||
1983 | 7 | 4 | 2 | 1 | 1 | 1 | 0 | CS Herbert | |||
1984 | 7 | 7 | 4 | 3 | 3 | 2 | 0 | ESCS "Sriharikota" | 430 | ||
1985 | 15 | 15 | 6 | 1 | 1 | 0 | 0 | VSCS "Bangladesh" | 11,107 | ||
1986 | 8 | 3 | 1 | 0 | 0 | 0 | 0 | CS 02B | 11 | ||
1987 | 9 | 8 | 5 | 3 | 1 | 0 | 0 | VSCS 01B | |||
1988 | 9 | 5 | 5 | 3 | 2 | 2 | 0 | ESCS "Bangladesh" | 6,740 | $13 million | |
1989 | 10 | 5 | 3 | 2 | 1 | 1 | 1 | SuCS Gay | 1,785 | $25.27 million | Typhoon Gay crossed over from the West Pacific Basin |
Total | 110 | 84 | 44 | 21 | 15 | 9 | 1 | Gay / Kavali | >20,073 | >$38.27 billion | |
References [27] |
Year | D | DD | CS | SCS | VSCS | ESCS | SuCS | Strongest storm | Deaths | Damage (USD) | Notes and References |
---|---|---|---|---|---|---|---|---|---|---|---|
1990 | 11 | 6 | 2 | 2 | 1 | 1 | 1 | SuCS BOB 01 | 967 | $600 million | [29] [30] |
1991 | 9 | 4 | 3 | 1 | 1 | 1 | 1 | SuCS "Bangladesh" | >138,000 | $1.5 billion | [30] |
1992 | 13 | 11 | 7 | 2 | 1 | 1 | 0 | ESCS Forrest | 189 | $69 million | Forrest crossed over from the West Pacific Basin |
1993 | 5 | 4 | 2 | 2 | 2 | 0 | 0 | ESCS BOB 02 | 714 | $216 million | |
1994 | 5 | 5 | 4 | 2 | 2 | 1 | 0 | ESCS "Bangladesh" | 315 | $12.5 million | |
1995 | 8 | 6 | 3 | 2 | 2 | 1 | 0 | ESCS BOB 07 | 554 | $46.3 million | |
1996 | 10 | 8 | 6 | 4 | 2 | 0 | 0 | VSCS "Andhra Pradesh" | 2,075 | $1.9 billion | |
1997 | 9 | 7 | 3 | 2 | 1 | 1 | 0 | ESCS "Bangladesh" | 117 | Unknown | |
1998 | 13 | 10 | 6 | 5 | 3 | 1 | 0 | ESCS "Gujarat" | >10,212 | $3 billion | |
1999 | 10 | 8 | 5 | 3 | 3 | 2 | 1 | SuCS "Odisha" | 15,780 | $5 billion | The Odisha cyclone is the strongest cyclone recorded in the Northern Indian Ocean. |
Total | 93 | 69 | 41 | 25 | 18 | 9 | 3 | "Odisha" | >168,923 | ~$12.35 billion | |
References [27] |
Year | D | DD | CS | SCS | VSCS | ESCS | SuCS | Strongest storm | Deaths | Damage (USD) | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|
2000 | 7 | 6 | 5 | 2 | 2 | 2 | 0 | ESCS "South India" | 238 | $185 million | |
2001 | 6 | 5 | 4 | 1 | 1 | 1 | 0 | ESCS "Gujarat" | 108 | $104 million | |
2002 | 7 | 7 | 4 | 1 | 0 | 0 | 0 | SCS "West Bengal" | 182 | $25 million | |
2003 | 7 | 5 | 3 | 3 | 1 | 0 | 0 | VSCS "Sri Lanka" | 358 | $163 million | |
2004 | 10 | 7 | 4 | 4 | 1 | 1 | 0 | ESCS "Myanmar" | 587 | $130 million | |
2005 | 12 | 7 | 3 | 0 | 0 | 0 | 0 | CS Pyarr | 273 | $21.4 million | |
2006 | 12 | 6 | 3 | 2 | 1 | 1 | 0 | ESCS Mala | 623 | $6.7 million | |
2007 | 11 | 8 | 4 | 2 | 2 | 2 | 1 | SuCS Gonu | 16,248 | $6.4 billion | |
2008 | 10 | 7 | 4 | 1 | 1 | 1 | 0 | ESCS Nargis | >138,927 | $15.4 billion | The deadliest cyclone season since 1970 Second-costliest cyclone season on record |
2009 | 8 | 6 | 4 | 1 | 0 | 0 | 0 | SCS Aila | 421 | $618 million | |
Total | 90 | 64 | 38 | 17 | 9 | 8 | 1 | Gonu | >157,965 | $16.65 billion | |
References [27] |
Year | D | DD | CS | SCS | VSCS | ESCS | SuCS | Strongest storm | Deaths | Damages (USD) | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|
2010 | 8 | 6 | 5 | 4 | 2 | 1 | 0 | ESCS Giri | 402 | $2.99 billion | The most active season since 1998 |
2011 | 10 | 6 | 2 | 1 | 1 | 0 | 0 | VSCS Thane | 360 | $277 million | |
2012 | 5 | 5 | 2 | 0 | 0 | 0 | 0 | CS Nilam | 128 | $56.7 million | The first depression of the year did not develop until October 10 |
2013 | 10 | 6 | 5 | 4 | 3 | 1 | 0 | ESCS Phailin | 323 | $1.5 billion | Featured Phailin, the first Category 5-equivalent cyclone since Sidr in 2007 |
2014 | 8 | 5 | 3 | 2 | 2 | 2 | 0 | ESCS Nilofar | 183 | $3.4 billion | |
2015 | 12 | 9 | 4 | 2 | 2 | 2 | 0 | ESCS Chapala | 363 | $358 million | First season on record with two cyclones producing hurricane-force winds in Socotra |
2016 | 10 | 5 | 4 | 1 | 1 | 0 | 0 | VSCS Vardah | 401 | $5.4 billion | |
2017 | 10 | 6 | 3 | 2 | 1 | 0 | 0 | VSCS Ockhi | 834 | $3.65 billion | |
2018 | 14 | 9 | 7 | 5 | 3 | 1 | 0 | ESCS Mekunu | 343 | $4.33 billion | The most active season since 1992 |
2019 | 12 | 11 | 8 | 6 | 6 | 3 | 1 | SuCS Kyarr | 173 | $11.5 billion | Earliest cyclonic storm in the basin First Super Cyclonic Storm since 2007 |
Total | 99 | 68 | 43 | 27 | 21 | 10 | 1 | Kyarr | 3510 | ≥$33.5 billion | |
References [27] | |||||||||||
Year | D | DD | CS | SCS | VSCS | ESCS | SuCS | Strongest storm | Deaths | Damages (USD) | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 9 | 6 | 5 | 4 | 3 | 1 | 1 | SuCS Amphan | 269 | $15.8 billion | First super cyclonic storm in the Bay of Bengal since 1999 Featured the costliest cyclone ever recorded in the basin, Amphan Costliest North Indian cyclone season on record |
2021 | 10 | 6 | 5 | 3 | 2 | 1 | 0 | ESCS Tauktae | 230 | $5.31 billion | |
2022 | 15 | 7 | 3 | 2 | 0 | 0 | 0 | SCS Asani | 79 | $52.4 million | First season on record to have two depressions forming in the month of March |
2023 | 10 | 8 | 7 | 5 | 4 | 3 | 0 | ESCS Mocha | 523 | $1.07 billion | Mocha was one of the strongest cyclones ever formed in the basin's history. |
2024 | 11 | 7 | 4 | 2 | 0 | 0 | 0 | SCS Remal | 113 | None | |
Total | 44 | 27 | 20 | 15 | 9 | 5 | 1 | Amphan | 1214 | $21.163 billion |
The 2007 North Indian Ocean cyclone season was one of the most active North Indian Ocean cyclone seasons on record. The North Indian Ocean cyclone season has no official bounds, but cyclones tend to form between April and December, with peaks in May and November. These dates conventionally delimit the period of each year when most tropical cyclones form in the northern Indian Ocean.
The 1999 North Indian Ocean cyclone season was an extremely active and deadly tropical cyclone season in recent times. It was an event in the annual cycle of tropical cyclone formation. The North Indian Ocean cyclone season has no official bounds, but cyclones tend to form between April and December, with peaks in May and October-November. These dates conventionally delimit the period of each year when most tropical cyclones form in the northern Indian Ocean.
The 1990 North Indian Ocean cyclone season featured a below average total of twelve cyclonic disturbances and one of the most intense tropical cyclones in the basin on record. During the season the systems were primarily monitored by the India Meteorological Department, while other warning centres such as the United States Joint Typhoon Warning Center also monitored the area. During the season, there were at least 1,577 deaths, while the systems caused over US$693 million in damages. The most significant system was the 1990 Andhra Pradesh cyclone, which was the most intense, damaging, and the deadliest system of the season.
The 1981 North Indian Ocean cyclone season was part of the annual cycle of tropical cyclone formation. A season has no official bounds but cyclones tend to form between April and December. These dates conventionally delimit the period of each year when most tropical cyclones form in the northern Indian Ocean. There are two main seas in the North Indian Ocean—the Bay of Bengal to the east of the Indian subcontinent and the Arabian Sea to the west of India. The official Regional Specialized Meteorological Centre in this basin is the India Meteorological Department (IMD), while the Joint Typhoon Warning Center (JTWC) releases unofficial advisories. An average of five tropical cyclones form in the North Indian Ocean every season with peaks in May and November. Cyclones occurring between the meridians 45°E and 100°E are included in the season by the IMD.
The 1985 North Indian Ocean cyclone season was part of the annual cycle of tropical cyclone formation. The season has no official bounds but cyclones tend to form between April and December. These dates conventionally delimit the period of each year when most tropical cyclones form in the northern Indian Ocean. There are two main seas in the North Indian Ocean—the Bay of Bengal to the east of the Indian subcontinent and the Arabian Sea to the west of India. The official Regional Specialized Meteorological Centre in this basin is the India Meteorological Department (IMD), while the Joint Typhoon Warning Center (JTWC) releases unofficial advisories. An average of five tropical cyclones form in the North Indian Ocean every season with peaks in May and November. Cyclones occurring between the meridians 45°E and 100°E are included in the season by the IMD.
The 2009 North Indian Ocean cyclone season was an average season in terms of the number of cyclonic storms, however the storms were mostly weak in nature. It was the first season since 2005 wherein a storm did not strength above severe cyclonic storm status. The North Indian Ocean cyclone season has no official bounds, but cyclones tend to form between April and December, with peaks in May and November. These dates conventionally delimit the period of each year when most tropical cyclones form in the northern Indian Ocean.
The 1977 North Indian Ocean cyclone season was part of the annual cycle of tropical cyclone formation. The season has no official bounds but cyclones tend to form between April and December. These dates conventionally delimit the period of each year when most tropical cyclones form in the northern Indian Ocean. There are two main seas in the North Indian Ocean—the Bay of Bengal to the east of the Indian subcontinent and the Arabian Sea to the west of India. The official Regional Specialized Meteorological Centre in this basin is the India Meteorological Department (IMD), while the Joint Typhoon Warning Center (JTWC) releases unofficial advisories. An average of five tropical cyclones form in the North Indian Ocean every season with peaks in May and November. Cyclones occurring between the meridians 45°E and 100°E are included in the season by the IMD.
The 1982 North Indian Ocean cyclone season was part of the annual cycle of tropical cyclone formation. The season has no official bounds but cyclones tend to form between April and December. These dates conventionally delimit the period of each year when most tropical cyclones form in the northern Indian Ocean. There are two main seas in the North Indian Ocean—the Bay of Bengal to the east of the Indian subcontinent and the Arabian Sea to the west of India. The official Regional Specialized Meteorological Centre in this basin is the India Meteorological Department (IMD), while the Joint Typhoon Warning Center (JTWC) releases unofficial advisories. An average of five tropical cyclones form in the North Indian Ocean every season with peaks in May and November. Cyclones occurring between the meridians 45°E and 100°E are included in the season by the IMD.
India is a country in the north of Indian Ocean that is the most vulnerable to getting hit by tropical cyclones in the basin, from the east or from the west. On average, 2–3 tropical cyclones make landfall in India each year, with about one being a severe tropical cyclone or greater.
The 2013 North Indian Ocean cyclone season was an above average and deadly season. The season had no official bounds, but cyclones typically formed between May and December, with the peak from October to November. These dates conventionally delimit the period of each year when most tropical cyclones form in the northern Indian Ocean.
The 2014 North Indian Ocean cyclone season was an event in the annual cycle of tropical cyclone formation. The season included two very severe cyclonic storms, both in October, and one other named cyclonic storm, classified according to the tropical cyclone intensity scale of the India Meteorological Department. Cyclone Hudhud is estimated to have caused US$3.58 billion in damage across eastern India, and more than 120 deaths.
The 2015 North Indian Ocean cyclone season was an event in the annual cycle of tropical cyclone formation. It was an average season with 4 cyclonic storms. The North Indian Ocean cyclone season has no official bounds, but cyclones tend to form between months of April and December, with the peak from May to November. These dates conventionally delimit the period of each year when most tropical cyclones form in the northern Indian Ocean.
The 2016 North Indian Ocean cyclone season was an event in the annual cycle of tropical cyclone formation. It was the deadliest season since 2010, killing more than 400 people. The season was an average one, seeing four named storms, with one further intensifying into a very severe cyclonic storm. The first named storm, Roanu, developed on 19 May while the season's last named storm, Vardah, dissipated on 18 December. The North Indian Ocean cyclone season has no official bounds, but cyclones tend to form between April and December, with the two peaks in May and November. These dates conventionally delimit the period of each year when most tropical cyclones form in the northern Indian Ocean.
The 2018 North Indian Ocean cyclone season was one of the most active North Indian Ocean cyclone seasons since 1992, with the formation of fourteen depressions and seven cyclones. The North Indian Ocean cyclone season has no official bounds, but cyclones tend to form between April and December, with the two peaks in May and November. These dates conventionally delimit the period of each year when most tropical cyclones form in the northern Indian Ocean.
The 2019 North Indian Ocean cyclone season was the second most active North Indian Ocean cyclone season on record in terms of cyclonic storms, the 1992 season was more active according to the Joint Typhoon Warning Center. The season featured 12 depressions, 11 deep depressions, 8 cyclonic storms, 6 severe cyclonic storms, 6 very severe cyclonic storms, 3 extremely severe cyclonic storms, and 1 super cyclonic storm, Kyarr, the first since Cyclone Gonu in 2007. Additionally, it also became the third-costliest season recorded in the North Indian Ocean, only behind the 2020 and 2008 seasons.
The 2020 North Indian Ocean cyclone season was the costliest North Indian Ocean cyclone season on record, mostly due to the devastating Cyclone Amphan. it was an above average season featuring 5 cyclonic storms. The North Indian Ocean cyclone season has no official bounds, but cyclones tend to form between April and November, with peaks in late April to May and October to November. These dates conventionally delimit the period of each year when most tropical cyclones form in the northern Indian Ocean. The season began on May 16 with the designation of Depression BOB 01 in the Bay of Bengal, which later became Amphan. Cyclone Amphan was the strongest storm in the Bay of Bengal in 21 years and would break Nargis of 2008's record as the costliest storm in the North Indian Ocean. The season concluded with the dissipation of Cyclone Burevi on December 5. Overall, the season was slightly above average, seeing the development of five cyclonic storms.
The 2021 North Indian Ocean cyclone season was an average season, the North Indian Ocean cyclone season has no official bounds, but cyclones tend to form between April and December, peaking between May and November. These dates conventionally delimit the period of each year when most tropical cyclones form in the northern Indian Ocean. The season began on April 2, when a depression designated as BOB 01 was formed in the north Andaman Sea and quickly made landfall in Myanmar. The basin remained quiet for over a month before Cyclone Tauktae formed. It rapidly intensified into an extremely severe cyclonic storm before making landfall in Gujarat, become the strongest storm ever to strike that state since the 1998 Gujarat cyclone. Later that month, BOB 02 formed and later strengthened into Cyclone Yaas. Yaas rapidly intensified into a very severe cyclonic storm before making landfall in northwestern Odisha. The season's strongest tropical cyclone was Cyclone Tauktae, with maximum wind speeds of 185 km/h (115 mph) and a minimum barometric pressure of 950 hPa (28.05 inHg).
The 2022 North Indian Ocean cyclone season was an event in the annual cycle of tropical cyclone formation. It was an above-average season in terms of depressions and average in terms of deep depressions, but slightly below average in terms of cyclonic storms. It was also the least deadly North Indian Ocean cyclone season since 1988, according to official data. The season's strongest tropical cyclone was Cyclone Asani, with maximum wind speeds of 100 km/h and a minimum barometric pressure of 982 hPa. The North Indian Ocean cyclone season has no official bounds, but cyclones tend to form between April and December, with the peak from May to November. These dates conventionally delimit the period of each year when most tropical cyclones form in the northern Indian Ocean.
The 2023 North Indian Ocean cyclone season was an above-average and deadly season, becoming the most active since 2019, with nine depressions and six cyclonic storms forming. It was the deadliest since 2017, mostly due to Cyclone Mocha, and had the second-highest accumulated cyclone energy (ACE) in the basin, after 2019. It also had the most extremely severe cyclonic storms on record, tying with 1999 and 2019. The North Indian Ocean cyclone season has no official bounds, but cyclones tend to form between April and December, with the peak from May to November. These dates conventionally delimit the period of each year when most tropical cyclones form in the northern Indian Ocean. However, a cyclone can form at any time during the year shown by an unnamed depression that affected Sri Lanka in January–February.
Severe Cyclonic Storm Asani was a strong tropical cyclone that made landfall in India in May 2022. It was the strongest storm of 2022 North Indian Ocean cyclone season. The third depression and deep depression, and the first named storm of the 2022 North Indian Ocean cyclone season, Asani originated from a depression that the Indian Meteorological Department first monitored on May 7. Conditions rapidly favored development as the system became a deep depression by that day before intensifying to a Cyclonic Storm Asani. On the next day it further intensified and peak to a severe cyclonic storm, before making landfall as a deep depression system over Andhra Pradesh. It degenerated into a well marked low-pressure on May 12.
{{cite web}}
: CS1 maint: multiple names: authors list (link)