External videos | |
---|---|
Sea smoke and steam devil over the Sea of Japan on December 25, 2021, on the south of Primorsky Krai of Russia, from Yuzhno-Morskoy (near Nakhodka). |
A steam devil is a small, weak whirlwind over water (or sometimes wet land) that has drawn fog into the vortex, thus rendering it visible. They form over large lakes and oceans during cold air outbreaks while the water is still relatively warm, and can be an important mechanism in vertically transporting moisture. [1] They are a component of sea smoke.
Smaller steam devils and steam whirls can form over geyser basins even in warm weather because of the very high water temperatures. Although observations of steam devils are generally quite rare, hot springs in Yellowstone Park produce them on a daily basis.
Steam devils have only been reported and studied since the 1970s. They are weaker than waterspouts and distinct from them. The latter are more akin to weak tornadoes over water.
Steam devils were first reported by Lyons and Pease in 1972 concerning their observations of Lake Michigan in January 1971. This month was a particularly cold one for Wisconsin (one of the coldest in the 20th century) which, combined with Lake Michigan staying mostly ice-free, produced good conditions for steam devil formation. Lyons and Pease named steam devils by comparison to the dust devils on land to which they have a comparable size and structure. They were also motivated by the need to distinguish steam devils from the much more powerful waterspout whose land equivalent is the tornado. Lyons and Pease wrote their article with the aim of persuading the National Oceanic and Atmospheric Administration to include steam devils in the International Field Year for the Great Lakes which was imminently to occur in 1972–3. [2]
Steam devils are vortices typically about 50 to 200 metres in diameter, essentially vertical, and up to 500 metres high. The general shape is like a small waterspout but they should not be considered related. Steam devils rotate with a cyclonic direction of motion, but not very fast or powerfully, usually just a few rotations per minute, and sometimes apparently not at all. There is usually a well-defined inner part of the rotating column of steam and a more ragged outer part from which clumps of steam often detach. Rather smaller steam devils can form over small lakes, especially the warm water in the hot springs of geyser basins. In these cases typical dimensions are a metre or so diameter, but can vary from less than 0.1 to 2 metres, and a height of 2 to 30 metres with a somewhat faster rotation of 60 rpm or so. The central core of the steam devil can be clear, in the same sense that the centre of a dust devil is clear of dust. The core is around 10% of the width of the rotating column. The sky above the steam devils may be clear, or there may be cumulus clouds present. In some cases the steam devils may rise directly into the cumulus, in these cases the cumulus may actually be caused by the steam devils - see below. Steam devils are a rare and short-lived phenomenon, typically surviving no more than three or four minutes, and the smaller ones over hot springs dissipating in a matter of seconds. [3] [note 1] Steam devils are sometimes confused with waterspouts as they can occur over the water. [4]
Steam devils can become detached from their base and be blown downstream by the wind. On small bodies of water such as hot springs this can mean that the steam devil ends up over land away from the water altogether. Such steam devils continue to rotate even after they have become detached from the source of heat, but will soon dissipate. [5]
Very small steam devils may have a poorly defined column and no identifiable clear inner core. Such vortices are more properly called steam whirls by analogy with the dust whirls of land. [6]
A precondition for the formation of steam devils is the presence of a layer of moist air on the water with the misty air (called arctic steam fog) being drawn upwards into fog streamers (non-rotating columns of steam fog). For this to happen the body of water must be unfrozen, and thus relatively warm, and there must be some wind of cold, dry air to form the fog. The cold air is warmed by the water and is humidified by evaporation. The warmed air begins to rise, and as it does so is cooled adiabatically by the falling pressure causing the water vapour content to condense out into fog streamers. [7]
For steam devils to form the air above the body of water must be very cold, and a fairly brisk (over 25 mph) wind of dry air needs to be blowing across the surface of the water. The temperature difference between the water and the air needs to be quite marked; the steam devils in figure 1 were forming with an air temperature of -21 °C (-6 °F) and a water temperature of 0.5 °C (33 °F) - a difference of 22 °C (39 °F). Under these conditions the air rises so energetically that the air flow becomes unstable and vortices start to form. Fog streamers drawn into the vortices render the vortices visible and they then become steam devils. [8] [note 1]
The steam fog tends to form irregular hexagonal cells in the horizontal plane which are elongated in the direction of the wind. In this honeycomb arrangement, three cells meet at a junction, and it is in these places that the steam devils form. This effect of vortex formation at the vertices of hexagonal cells is an example of vertex vortices. [9]
The layer of cumulus seen above steam devils during cold air outbreaks on Lake Michigan and elsewhere may not be coincidental. Airborne radar studies during cold air outbreaks on the lake have shown that some steam devils penetrate through the thermal internal boundary layer (below which convective circulation takes place) and may be more significant for thermal mixing than normal convection, transporting moist air vertically above the convection boundary. The resulting large scale view is a layer of arctic steam fog close to the water surface, a layer of cumulus just above the convection boundary and a regular array of steam devils joining the two. [10]
Steam devils are seen on the Great Lakes in early winter. They occur in the Atlantic off the coast of the Carolinas when cold air from the continent blows across the Gulf Stream. Steam devils can occur on small lakes and even over hot springs, but rather more rarely than on large bodies of water. It is also possible for steam devils to form over wet land if the air is cold and the sun is heating the ground. [11]
Small steam devils occur at some of the larger hot springs in Yellowstone Park where a layer of steam fog hangs over the pools and wind can start to lift it up into fog streamers. One such example is the Grand Prismatic Spring in the Yellowstone Midway Geyser Basin. The air temperature can be high in terms of human comfort when the steam devils form. In 1982 a cluster of seventeen steam devils was observed when the air temperature was between 17 and 21 °C. Although this is much higher than, for instance, the temperature of the air over the Great Lakes, the water temperature is also proportionately higher, being very close to boiling, so the temperature difference is still 79 °C. [12]
Another well known location in Yellowstone, the Old Faithful geyser, produces horizontal steam devils. In all, Yellowstone probably has the most frequent occurrences of accessible steam devils anywhere. Several steam devils are produced every hour at the most productive locations. [13] Steam devils over geyser basins were first reported by Holle in 1977. [14]
A geyser is a spring with an intermittent discharge of water ejected turbulently and accompanied by steam. The formation of geysers is fairly rare, and is caused by particular hydrogeological conditions that exist only in a few places on Earth.
In meteorology, a cyclone is a large air mass that rotates around a strong center of low atmospheric pressure, counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere as viewed from above. Cyclones are characterized by inward-spiraling winds that rotate about a zone of low pressure. The largest low-pressure systems are polar vortices and extratropical cyclones of the largest scale. Warm-core cyclones such as tropical cyclones and subtropical cyclones also lie within the synoptic scale. Mesocyclones, tornadoes, and dust devils lie within the smaller mesoscale.
Cumulus clouds are clouds that have flat bases and are often described as puffy, cotton-like, or fluffy in appearance. Their name derives from the Latin cumulus, meaning "heap" or "pile". Cumulus clouds are low-level clouds, generally less than 2,000 m (6,600 ft) in altitude unless they are the more vertical cumulus congestus form. Cumulus clouds may appear by themselves, in lines, or in clusters.
Fog is a visible aerosol consisting of tiny water droplets or ice crystals suspended in the air at or near the Earth's surface. Fog can be considered a type of low-lying cloud usually resembling stratus, and is heavily influenced by nearby bodies of water, topography, and wind conditions. In turn, fog affects many human activities, such as shipping, travel, and warfare.
A thunderstorm, also known as an electrical storm or a lightning storm, is a storm characterized by the presence of lightning and its acoustic effect on the Earth's atmosphere, known as thunder. Relatively weak thunderstorms are sometimes called thundershowers. Thunderstorms occur in a type of cloud known as a cumulonimbus. They are usually accompanied by strong winds and often produce heavy rain and sometimes snow, sleet, or hail, but some thunderstorms produce little precipitation or no precipitation at all. Thunderstorms may line up in a series or become a rainband, known as a squall line. Strong or severe thunderstorms include some of the most dangerous weather phenomena, including large hail, strong winds, and tornadoes. Some of the most persistent severe thunderstorms, known as supercells, rotate as do cyclones. While most thunderstorms move with the mean wind flow through the layer of the troposphere that they occupy, vertical wind shear sometimes causes a deviation in their course at a right angle to the wind shear direction.
Old Faithful is a cone geyser in Yellowstone National Park in Wyoming, United States. It was named in 1870 during the Washburn–Langford–Doane Expedition and was the first geyser in the park to be named. It is a highly predictable geothermal feature and has erupted every 44 minutes to two hours since 2000. The geyser and the nearby Old Faithful Inn are part of the Old Faithful Historic District.
The geothermal areas of Yellowstone include several geyser basins in Yellowstone National Park as well as other geothermal features such as hot springs, mud pots, and fumaroles. The number of thermal features in Yellowstone is estimated at 10,000. A study that was completed in 2011 found that a total of 1,283 geysers have erupted in Yellowstone, 465 of which are active during an average year. These are distributed among nine geyser basins, with a few geysers found in smaller thermal areas throughout the Park. The number of geysers in each geyser basin are as follows: Upper Geyser Basin (410), Midway Geyser Basin (59), Lower Geyser Basin (283), Norris Geyser Basin (193), West Thumb Geyser Basin (84), Gibbon Geyser Basin (24), Lone Star Geyser Basin (21), Shoshone Geyser Basin (107), Heart Lake Geyser Basin (69), other areas (33). Although famous large geysers like Old Faithful are part of the total, most of Yellowstone's geysers are small, erupting to only a foot or two. The hydrothermal system that supplies the geysers with hot water sits within an ancient active caldera. Many of the thermal features in Yellowstone build up sinter, geyserite, or travertine deposits around and within them.
The geothermal areas in Lassen Volcanic National Park include several groups of hot springs and fumaroles, as remnants of former volcanic activity, exist in Lassen Volcanic National Park in northeastern California. Most of these lie in or are closely adjacent to Mount Tehama's caldera. Bumpass Hell is the most spectacular of these, but others of importance are Sulphur Works, Little Hot Springs Valley, Boiling Springs Lake and Devil's Kitchen. In each thermal area, the highest temperature of water generally is close to the boiling temperature at the altitude of the particular spring or fumarole — 198 °F (92 °C) at Bumpass Hell and 191 °F (88 °C) on the northwest flanks of Lassen Peak. Temperatures as high as 230 °F (110 °C) have been recorded in the park.
A thermal column is a rising mass of buoyant air, a convective current in the atmosphere, that transfers heat energy vertically. Thermals are created by the uneven heating of Earth's surface from solar radiation, and are an example of convection, specifically atmospheric convection.
A waterspout is a rotating column of air that occurs over a body of water, usually appearing as a funnel-shaped cloud in contact with the water and a cumuliform cloud. There are two types of waterspout, each formed by distinct mechanisms. The most common type is a weak vortex known as a "fair weather" or "non-tornadic" waterspout. The other less common type is simply a classic tornado occurring over water rather than land, known as a "tornadic", "supercellular", or "mesocyclonic" waterspout, and accurately a "tornado over water". A fair weather waterspout has a five-part life cycle: formation of a dark spot on the water surface; spiral pattern on the water surface; formation of a spray ring; development of a visible condensation funnel; and ultimately, decay. Most waterspouts do not suck up water.
Cyclogenesis is the development or strengthening of cyclonic circulation in the atmosphere. Cyclogenesis is an umbrella term for at least three different processes, all of which result in the development of some sort of cyclone, and at any size from the microscale to the synoptic scale.
An anticyclonic storm is a storm with a high-pressure center, in which winds flow in the direction opposite to that of the flow above a region of low pressure. Unlike a cyclonic storm, anticyclonic storms are typically associated with fair weather and stable atmospheric conditions. On other planets or in rare cases on Earth, anticyclones can contribute to inclement weather. Examples include Hartmut, which brought a blizzard to the British Isles in 2018, as well as persistent anticyclonic storms on Jupiter and Neptune.
A funnel cloud is a funnel-shaped cloud of condensed water droplets, associated with a rotating column of wind and extending from the base of a cloud but not reaching the ground or a water surface. A funnel cloud is usually visible as a cone-shaped or needle like protuberance from the main cloud base. Funnel clouds form most frequently in association with supercell thunderstorms, and are often, but not always, a visual precursor to tornadoes. Funnel clouds are visual phenomena, but these are not the vortex of wind itself.
A mesoscale convective system (MCS) is a complex of thunderstorms that becomes organized on a scale larger than the individual thunderstorms but smaller than extratropical cyclones, and normally persists for several hours or more. A mesoscale convective system's overall cloud and precipitation pattern may be round or linear in shape, and include weather systems such as tropical cyclones, squall lines, lake-effect snow events, polar lows, and mesoscale convective complexes (MCCs), and generally forms near weather fronts. The type that forms during the warm season over land has been noted across North and South America, Europe, and Asia, with a maximum in activity noted during the late afternoon and evening hours.
The Firehole River is located in northwestern Wyoming, and is one of the two major tributaries of the Madison River. It flows north approximately 21 miles (34 km) from its source in Madison Lake on the Continental Divide to join the Gibbon River at Madison Junction in Yellowstone National Park. It is part of the Missouri River system.
Tornadogenesis is the process by which a tornado forms. There are many types of tornadoes and these vary in methods of formation. Despite ongoing scientific study and high-profile research projects such as VORTEX, tornadogenesis is a volatile process and the intricacies of many of the mechanisms of tornado formation are still poorly understood.
Atmospheric convection is the result of a parcel-environment instability in the atmosphere. Different lapse rates within dry and moist air masses lead to instability. Mixing of air during the day expands the height of the planetary boundary layer, leading to increased winds, cumulus cloud development, and decreased surface dew points. Convection involving moist air masses leads to thunderstorm development, which is often responsible for severe weather throughout the world. Special threats from thunderstorms include hail, downbursts, and tornadoes.
Atmospheric instability is a condition where the Earth's atmosphere is considered to be unstable and as a result local weather is highly variable through distance and time. Atmospheric stability is a measure of the atmosphere's tendency to discourage vertical motion, and vertical motion is directly correlated to different types of weather systems and their severity. In unstable conditions, a lifted thing, such as a parcel of air will be warmer than the surrounding air. Because it is warmer, it is less dense and is prone to further ascent.
Hydrothermal explosions occur when superheated water trapped below the surface of the Earth rapidly converts from liquid to steam, violently disrupting the confining rock. Boiling water, steam, mud, and rock fragments are ejected over an area of a few meters up to several kilometers in diameter. Although the energy originally comes from a deep igneous source, this energy is transferred to the surface by circulating meteoric water or mixtures of meteoric and magmatic water rather than by magma, as occurs in volcanic eruptions. The energy is stored as heat in hot water and rock within a few hundred feet of the surface.
This glossary of meteorology is a list of terms and concepts relevant to meteorology and atmospheric science, their sub-disciplines, and related fields.