1996 Lake Huron cyclone

Last updated

The Great Lakes region has experienced the remnants of several hurricanes, most commonly those which originally made U.S. landfall along the Gulf of Mexico. [2] Very few such storms have retained any tropical characteristics by the time they reached the Great Lakes. In general, the strongest of these storms resulted from interactions between a hurricane remnant and an extratropical weather system. Only two such storms had hurricane-force winds over the Great Lakes. [2] [4] [5]

After merging with a strong cold front, the remnant of the 1941 Texas hurricane had hurricane-force winds over Lake Huron and Lake Ontario, with steady winds of 56 miles per hour (90 km/h) reported over Detroit. [2] Half of the resulting deaths occurred in Toronto, and many injuries resulted from windows blown out in Detroit. [2] [4] Although the center of the storm was tracked over Chicago and other highly populated areas, no other inland region reported similar damage. Similar to the 1996 Lake Huron cyclone, the 1941 hurricane tracked over the Great Lakes in September, when the lakes are at their warmest. [2]

Hurricane Hazel entered the Great Lakes region as an extratropical storm just west of Toronto. The storm had lost most of its intensity after tracking over 600 miles (970 km) inland. However, the remnant interacted with a trough just south of Lake Erie, resulting in explosive strengthening as it entered the Great Lakes region. [5] Hurricane Hazel was an October storm with winds equivalent to a Category 1 hurricane by the time it reached Canada, but most of its damage was caused by extreme rainfall on already-saturated ground. [5]

Despite not having hurricane-force winds, Hurricane Connie of 1955 is also notable as it is one of very few storms to make a tropical landfall in the Great Lakes as well.

In contrast, the 1996 Lake Huron cyclone developed tropical characteristics over the Great Lakes region completely independent of precursor tropical cyclones. This makes it unique among Great Lakes storms.

Meteorological history

Map plotting the storm's track and intensity, according to the Saffir-Simpson scale

.mw-parser-output .hidden-begin{box-sizing:border-box;width:100%;padding:5px;border:none;font-size:95%}.mw-parser-output .hidden-title{font-weight:bold;line-height:1.6;text-align:left}.mw-parser-output .hidden-content{text-align:left}
Map key
Saffir-Simpson scale
.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
Tropical depression (<=38 mph, <=62 km/h)

Tropical storm (39-73 mph, 63-118 km/h)

Category 1 (74-95 mph, 119-153 km/h)

Category 2 (96-110 mph, 154-177 km/h)

Category 3 (111-129 mph, 178-208 km/h)

Category 4 (130-156 mph, 209-251 km/h)

Category 5 (>=157 mph, >=252 km/h)

Unknown
Storm type
Tropical cyclone
Subtropical cyclone
Extratropical cyclone, remnant low, tropical disturbance, or monsoon depression 1996 Lake Huron cyclone track.png
Map plotting the storm's track and intensity, according to the Saffir–Simpson scale
Map key
  Tropical depression (≤38 mph, ≤62 km/h)
  Tropical storm (39–73 mph, 63–118 km/h)
  Category 1 (74–95 mph, 119–153 km/h)
  Category 2 (96–110 mph, 154–177 km/h)
  Category 3 (111–129 mph, 178–208 km/h)
  Category 4 (130–156 mph, 209–251 km/h)
  Category 5 (≥157 mph, ≥252 km/h)
  Unknown
Storm type
ArrowUp.svg Extratropical cyclone, remnant low, tropical disturbance, or monsoon depression

On September 11, 1996, a weak low-pressure area was situated close to Lake Superior, [6] as well as a shortwave trough over Ontario. The storm was centered over Lake Michigan, and its central pressure was 1012 mbar (29.9 inHg). The northwest tilt of the low in the atmosphere indicated that the surface center was strengthening, due to baroclinic forcing. In addition to this, analyses of the atmosphere concluded that the cyclone's circulation extended into the upper troposphere. [6]

The cyclone's overall strength increased dramatically while meandering over the Great Lakes, with surface sustained winds building from 11 to 67 mph (18 to 108 km/h). [6] [nb 1] By September 12, the cyclone had been steered by a cold front to a position over Lake Huron, with the cyclone's upper-level circulation centered to the west, over Michigan. During this 24-hour period, the cyclone's central pressure fell from 1012 to 1006 mbar (29.9 to 29.7 inHg). After 12:00  UTC on September 12, the low moved southeastward and became more vertically organized. [6]

The cyclone briefly passed over Lake Huron as it proceeded southeastward. The cyclone's lower levels experienced the highest intensification. As the cyclone's component layers were well-stacked, the storm was ripe for development. Eventually, the cold front to the north, which was connected to the surface low, became an occluded front, as it entangled with the surface warm front. The occluded front extended from Lake Huron to Pennsylvania on September 13. A 155-mile (250 km) swath of showers and thunderstorms was positioned across the area. More showers were centered near the occluded low. [6]

Between 12:00 UTC on September 13 and 00:00 UTC on September 14, a shortwave trough rotated throughout the area of the occluded front. This caused the mid-level portion of the cyclone to move eastward, centering itself just east of Lake Huron. [6] During the same period, the surface circulation of the storm moved slowly over Lake Huron, beginning to align with the mid-level circulation, and deepened to 999 mbar (29.5 inHg). In response to this intensification, the maximum sustained winds of the storm increased as well. After 00:00 UTC on September 14, the lower-level and mid-level circulations of the cyclone moved westward, becoming vertically stacked again. In contrast to the earlier developments, the baroclinic processes of the system weakened rapidly, and the system became more shallow. However, the low-level circulation of the cyclone continued to intensify, and the storm's central pressure dropped to 992 mbar (29.3 inHg), as the storm reached its peak intensity, [6] due to increased circulation. At the time of its peak intensity, the cyclone had maximum sustained winds of 73 miles per hour (117 km/h), equivalent to that of a high-end tropical storm, and on the threshold of a Category 1 hurricane on the Saffir–Simpson scale (SSHWS). [7]

Between 12:00 UTC on September 14 and 00:00 UTC on September 15, visible satellite imagery of the cyclone revealed that it resembled subtropical cyclone, as it possessed multiple characteristics of a tropical cyclone while also possessing hybrid characteristics, with an eye-like feature about 19 miles (30 km) wide. [6] [3] In addition to the eye, convective clouds had also formed, creating an eyewall resembling that seen in tropical cyclones. [2] Furthermore, bands of convection continued extending westward about 310 miles (500 km). Soon afterward, prevailing winds in the area shifted to the east-northeast and rapidly increased, shearing the system, causing it to weaken. In contrast to the earlier stages of the system's life, the system was now much shallower and harbored energy closer to the surface. Surface analysis indicated that the cyclone had multiple central circulations at the time, with a weaker cyclonic circulation persisting over the eastern shore of Lake Huron and another center north of Lake Ontario. [6] During this 12-hour period, the cyclone decayed rapidly, mainly in the lower troposphere. Twelve-hour height rises also occurred in the structure of the cyclone, with the air pressure increasing at various layers of the cyclone, ranging from 197 feet (60 m) at the surface level to 66 feet (20 m) at the 300 mbar (8.9 inHg)-level. On September 15, the cyclone weakened into a remnant low and left Lake Huron, before dissipating soon afterward. High waves were also created by the storm in Lake Erie. [6]

Impact

1996 Lake Huron cyclone
Lake Huron Cyclone 1996-09-14 1745Z.png
The cyclone at peak intensity on September 14.

Excessive rain of over 4 inches (100 mm) fell over the land surrounding the Great Lakes. This caused flooding in both the United States around Buffalo, New York and on the eastern shore of Lake Huron in Ontario, Canada. [6] However, other than the flooding caused by the storm, there were no reports of fatalities or further significant damage from the storm. [8] The storm also caused significant erosion along the shoreline, and resulted in the loss of several homes and businesses. The storm was a reminder of the potential for severe weather in the Great Lakes region and the importance of preparedness and response planning.

Notes

  1. All winds are one-minute sustained unless otherwise noted.

See also

Related Research Articles

<span class="mw-page-title-main">1967 Atlantic hurricane season</span> Hurricane season in the Atlantic Ocean

The 1967 Atlantic hurricane season was an active Atlantic hurricane season overall, producing 13 nameable storms, of which 6 strengthened into hurricanes. The season officially began on June 1, 1967, and lasted until November 30, 1967. These dates, adopted by convention, historically describe the period in each year when most tropical cyclogenesis occurs in the Atlantic Ocean. The season's first system, Tropical Depression One, formed on June 10, and the last, Tropical Storm Heidi, lost tropical characteristics on November 2.

<span class="mw-page-title-main">1969 Atlantic hurricane season</span> Hurricane season in the Atlantic Ocean

The 1969 Atlantic hurricane season was the most active Atlantic hurricane season since the 1933 season, and was the final year of the most recent positive ("high-quality") Atlantic multidecadal oscillation (AMO) era. The hurricane season officially began on June 1, and lasted until November 30. Altogether, 12 tropical cyclones reached hurricane strength, the highest number on record at the time; a mark not surpassed until 2005. The season was above-average despite an El Niño, which typically suppresses activity in the Atlantic Ocean, while increasing tropical cyclone activity in the Pacific Ocean. Activity began with a tropical depression that caused extensive flooding in Cuba and Jamaica in early June. On July 25, Tropical Storm Anna developed, the first named storm of the season. Later in the season, Tropical Depression Twenty-Nine caused severe local flooding in the Florida Panhandle and southwestern Georgia in September.

<span class="mw-page-title-main">1940 Atlantic hurricane season</span> Hurricane season in the Atlantic Ocean

The 1940 Atlantic hurricane season was a generally average period of tropical cyclogenesis in 1940. Though the season had no official bounds, most tropical cyclone activity occurred during August and September. Throughout the year, fourteen tropical cyclones formed, of which nine reached tropical storm intensity; six were hurricanes. None of the hurricanes reached major hurricane intensity. Tropical cyclones that did not approach populated areas or shipping lanes, especially if they were relatively weak and of short duration, may have remained undetected. Because technologies such as satellite monitoring were not available until the 1960s, historical data on tropical cyclones from this period are often not reliable. As a result of a reanalysis project which analyzed the season in 2012, an additional hurricane was added to HURDAT. The year's first tropical storm formed on May 19 off the northern coast of Hispaniola. At the time, this was a rare occurrence, as only four other tropical disturbances were known to have formed prior during this period; since then, reanalysis of previous seasons has concluded that there were more than four tropical cyclones in May before 1940. The season's final system was a tropical disturbance situated in the Greater Antilles, which dissipated on November 8.

<span class="mw-page-title-main">1937 Atlantic hurricane season</span> Hurricane season in the Atlantic Ocean

The 1937 Atlantic hurricane season was a below-average hurricane season, featuring eleven tropical storms; of these, four became hurricanes. One hurricane reached major hurricane intensity, equivalent to a Category 3 or higher on the modern Saffir–Simpson scale. The United States Weather Bureau defined the season as officially lasting from June 16 to October 16. Tropical cyclones that did not approach populated areas or shipping lanes, especially if they were relatively weak and of short duration, may have remained undetected. Because technologies such as satellite monitoring were not available until the 1960s, historical data on tropical cyclones from this period are often not reliable. As a result of a reanalysis project which analyzed the season in 2012, a tropical storm and a hurricane were added to the Atlantic hurricane database (HURDAT). The official intensities and tracks of all storms were also revised by the reanalysis. The year's first storm formed on July 29 in the Gulf of Mexico, and the final system, a hurricane, dissipated over open ocean on October 21.

<span class="mw-page-title-main">1929 Atlantic hurricane season</span> Hurricane season in the Atlantic Ocean

The 1929 Atlantic hurricane season was among the least active Atlantic hurricane seasons on record, with only five tropical cyclones forming. Three of them intensified into a hurricane, with one strengthening further into a major hurricane. The first tropical cyclone of the season developed in the Gulf of Mexico on June 27. Becoming a hurricane on June 28, the storm struck Texas, bringing strong winds to a large area. Three fatalities were reported, while damage was conservatively estimated at $675,000 (1929 USD).

<span class="mw-page-title-main">1912 Atlantic hurricane season</span> Hurricane season in the Atlantic Ocean

The 1912 Atlantic hurricane season was an average hurricane season that featured the first recorded November major hurricane. There were eleven tropical cyclones, seven of which became tropical storms; four of those strengthened into hurricanes, and one reached major hurricane intensity. The season's first cyclone developed on April 4, while the final dissipated on November 21. The season's most intense and most devastating tropical cyclone was the final storm, known as the Jamaica hurricane. It produced heavy rainfall on Jamaica, leading to at least 100 fatalities and about $1.5 million (1912 USD) in damage. The storm was also blamed for five deaths in Cuba.

<span class="mw-page-title-main">1975 Pacific Northwest hurricane</span> Category 1 Pacific hurricane in 1975

The 1975 Pacific Northwest hurricane was an unusual Pacific tropical cyclone that attained hurricane status farther north than any other Pacific hurricane. It was officially unnamed, with the cargo ship Transcolorado providing vital meteorological data in assessing the storm. The twelfth tropical cyclone of the 1975 Pacific hurricane season, it developed from a cold-core upper-level low merging with the remnants of a tropical cyclone on August 31, well to the northeast of Hawaii. Convection increased as the circulation became better defined, and by early on September 2, it became a tropical storm. Turning to the northeast through an area of warm water temperatures, the storm quickly strengthened, and, after developing an eye, it attained hurricane status late on September 3, while located about 1,200 miles (1,950 km) south of Alaska. After maintaining peak winds for about 18 hours, the storm rapidly weakened, as it interacted with an approaching cold front. Early on September 5, it lost its identity near the coast of Alaska.

<span class="mw-page-title-main">Timeline of the 2008 Atlantic hurricane season</span>

The 2008 Atlantic hurricane season was an event in the annual tropical cyclone season in the north Atlantic Ocean. An above-average Atlantic hurricane season season, it was the first on record to have a major hurricane in every month from July to November.

<span class="mw-page-title-main">2011 Atlantic hurricane season</span> Hurricane season in the Atlantic Ocean

The 2011 Atlantic hurricane season was the second in a group of three very active Atlantic hurricane seasons, each with 19 named storms, only behind 1887, 1995, 2010, and 2012. The above-average activity was mostly due to a La Niña that persisted during the previous year. Of the season's 19 tropical storms, only seven strengthened into hurricanes, and four of those became major hurricanes: Irene, Katia, Ophelia, and Rina. The season officially began on June 1 and ended on November 30, dates which conventionally delimit the period during each year in which most tropical cyclones develop in the Atlantic Ocean. However, the first tropical storm of the season, Arlene, did not develop until nearly a month later. The final system, Tropical Storm Sean, dissipated over the open Atlantic on November 11.

<span class="mw-page-title-main">2015 Pacific hurricane season</span> Hurricane season in the Pacific Ocean

The 2015 Pacific hurricane season is the second-most active Pacific hurricane season on record, with 26 named storms, only behind the 1992 season. A record-tying 16 of those storms became hurricanes, and a record 11 storms further intensified into major hurricanes throughout the season. The Central Pacific, the portion of the Northeast Pacific Ocean between the International Date Line and the 140th meridian west, had its most active year on record, with 16 tropical cyclones forming in or entering the basin. Moreover, the season was the third-most active season in terms of accumulated cyclone energy, amassing a total of 290 units. The season officially started on May 15 in the Eastern Pacific and on June 1 in the Central Pacific; they both ended on November 30. These dates conventionally delimit the period of each year when most tropical cyclones form in the Northeast Pacific basin. However, the formation of tropical cyclones is possible at any time of the year. This was shown when a tropical depression formed on December 31. The above-average activity during the season was attributed in part to the very strong 2014–16 El Niño event.

<span class="mw-page-title-main">Timeline of the 2012 Atlantic hurricane season</span>

The 2012 Atlantic hurricane season was an event in the annual hurricane season in the north Atlantic Ocean. For the third year in a row there were 19 named storms. The season officially began on June 1, 2012, and ended on November 30, 2012, dates that conventionally delimit the period of each year when most tropical cyclones develop in the Atlantic basin. Surprisingly, two preseason storms formed: Alberto on May 19, and Beryl on May 26. This was the first such occurrence since the 1951 season. The final storm to dissipate was Sandy, on October 29. Altogether, ten storms became hurricanes, of which two intensified into major hurricanes.

<span class="mw-page-title-main">2018 Atlantic hurricane season</span> Hurricane season in the Atlantic Ocean

The 2018 Atlantic hurricane season was the third in a consecutive series of above-average and damaging Atlantic hurricane seasons, featuring 15 named storms, 8 hurricanes, and 2 major hurricanes, which caused a total of over $50 billion in damages and at least 172 deaths. More than 98% of the total damage was caused by two hurricanes. The season officially began on June 1, 2018, and ended on November 30, 2018. These dates historically describe the period in each year when most tropical cyclones form in the Atlantic basin and are adopted by convention. However, subtropical or tropical cyclogenesis is possible at any time of the year, as demonstrated by the formation of Tropical Storm Alberto on May 25, making this the fourth consecutive year in which a storm developed before the official start of the season. The season concluded with Oscar transitioning into an extratropical cyclone on October 31, almost a month before the official end.

<span class="mw-page-title-main">Meteorological history of Hurricane Dennis</span>

The meteorological history of Hurricane Dennis spanned twenty-two days, beginning with its inception as a tropical wave over Africa on June 26, 2005, and terminating with its dissipation on July 18 over the Great Lakes of North America. The incipient wave that became Dennis emerged over the Atlantic Ocean on June 29 and moved briskly to the west. Dry air initially inhibited development, though once this abated the wave was able to consolidate into a tropical depression on July 4. The depression soon crossed Grenada before entering the Caribbean whereupon increasingly favorable environmental factors, such as low wind shear and high sea surface temperatures, fueled intensification. Turning west-northwest, the system achieved tropical storm status on July 5 and hurricane status the following day.

<span class="mw-page-title-main">Hurricane Alex (2016)</span> Category 1 Atlantic hurricane in 2016

Hurricane Alex was the first Atlantic hurricane to occur in January since Hurricane Alice of 1954–55. Alex originated as a non-tropical low near the Bahamas on January 7, 2016. Initially traveling northeast, the system passed by Bermuda on January 8 before turning southeast and deepening. It briefly acquired hurricane-force winds by January 10, then weakened slightly before curving towards the east and later northeast. Acquiring more tropical weather characteristics over time, the system transitioned into a subtropical cyclone well south of the Azores on January 12, becoming the first North Atlantic tropical or subtropical cyclone in January since Tropical Storm Zeta of 2005–2006. Alex continued to develop tropical features while turning north-northeast, and transitioned into a fully tropical cyclone on January 14. The cyclone peaked in strength as a Category 1 hurricane on the Saffir–Simpson scale (SSHWS), with maximum sustained winds of 85 mph and a central pressure of 981 mbar. Alex weakened to a high-end tropical storm before making landfall on Terceira Island on January 15. By that time, the storm was losing its tropical characteristics; it fully transitioned back into a non-tropical cyclone several hours after moving away from the Azores. Alex ultimately merged with another cyclone over the Labrador Sea on January 17.

<span class="mw-page-title-main">Meteorological history of Hurricane Patricia</span>

Hurricane Patricia was the most intense tropical cyclone ever recorded in the Western Hemisphere and the second-most intense worldwide in terms of barometric pressure. It also featured the highest one-minute maximum sustained winds ever recorded in a tropical cyclone. Originating from a sprawling disturbance near the Gulf of Tehuantepec in mid-October 2015, Patricia was first classified a tropical depression on October 20. Initial development was slow, with only modest strengthening within the first day of its classification. The system later became a tropical storm and was named Patricia, the twenty-fourth named storm of the annual hurricane season. Exceptionally favorable environmental conditions fueled explosive intensification on October 22. A well-defined eye developed within an intense central dense overcast and Patricia grew from a tropical storm to a Category 5 hurricane in just 24 hours—a near-record pace. The magnitude of intensification was poorly forecast and both forecast models and meteorologists suffered from record-high prediction errors.

<span class="mw-page-title-main">2021 Atlantic hurricane season</span> Hurricane season in the Atlantic Ocean

The 2021 Atlantic hurricane season was the third-most active Atlantic hurricane season on record in terms of number of tropical cyclones, although many of them were weak and short-lived. With 21 named storms forming, it became the second season in a row and third overall in which the designated 21-name list of storm names was exhausted. Seven of those storms strengthened into a hurricane, four of which reached major hurricane intensity, which is slightly above-average. The season officially began on June 1 and ended on November 30. These dates historically describe the period in each year when most Atlantic tropical cyclones form. However, subtropical or tropical cyclogenesis is possible at any time of the year, as demonstrated by the development of Tropical Storm Ana on May 22, making this the seventh consecutive year in which a storm developed outside of the official season.

<span class="mw-page-title-main">Timeline of the 2019 Atlantic hurricane season</span>

The 2019 Atlantic hurricane season was an event in the annual tropical cyclone season in the north Atlantic Ocean. It was the fourth consecutive above-normal Atlantic hurricane season. The season officially began on June 1, 2019 and ended on November 30, 2019. These dates, adopted by convention, historically describe the period in each year when most tropical systems form. However, storm formation is possible at any time of the year, as demonstrated in 2019 by the formation of the season's first named storm, Subtropical Storm Andrea, on May 20. The final storm of the season, Tropical Storm Sebastien, transitioned to an extratropical cyclone on November 25.

<span class="mw-page-title-main">Timeline of the 2020 Atlantic hurricane season</span>

The 2020 Atlantic hurricane season was the most active Atlantic hurricane season on record in terms of number of named storms. Additionally, it was as an above-average season for tropical cyclones for the fifth consecutive year. The season officially began on June 1, 2020, and ended on November 30, 2020. These dates, adopted by convention, historically delimit the period each year when most Atlantic tropical systems form. However, storm formation is possible at any time of the year, as was the case this season, when its first two named storms, Tropical Storm Arthur and Tropical Storm Bertha, formed on May 16 and May 27, respectively. The final storm, Hurricane Iota, dissipated on November 18.

<span class="mw-page-title-main">Meteorological history of Hurricane Laura</span>

Hurricane Laura tied the record for the strongest hurricane to make landfall in Louisiana as measured by maximum sustained winds, along with the 1856 Last Island hurricane and Hurricane Ida, and was overall the tenth-strongest hurricane to make landfall in the United States. The thirteenth tropical cyclone, twelfth named storm, fourth hurricane, and first major hurricane of the 2020 Atlantic hurricane season, Laura originated from a large tropical wave that moved off the West African coast on August 16. The tropical wave gradually organized, becoming a tropical depression on August 20. Though in only a marginally conducive environment for intensification, the depression nevertheless intensified into a tropical storm a day later, becoming the earliest twelfth named storm on record in the North Atlantic basin, forming eight days earlier than 1995's Hurricane Luis. The depression received the name Laura and tracked west-northwest towards the Lesser Antilles.

<span class="mw-page-title-main">Meteorological history of Hurricane Iota</span>

Hurricane Iota was the second-most powerful November tropical cyclone on record in the Atlantic basin, behind only the 1932 Cuba hurricane. It was also the strongest and most intense hurricane of the hyperactive 2020 Atlantic hurricane season. At the end of October, a tropical wave emerged off Africa and traversed the Atlantic Ocean with little note. The system later impacted northern South America and the Lesser Antilles before becoming more organized, eventually becoming a tropical depression on November 13 over the Caribbean Sea. Initially stymied by adverse environmental conditions the system, which soon became Tropical Storm Iota, struggled to organize as it took an atypical southwest track. After developing a small, well-organized core, Iota entered region exceptionally favorable for explosive intensification and dramatically developed. Within a 42-hour period from November 15 to 16, Iota strengthened from a tropical storm to a high-end Category 4 hurricane with peak winds of 155 mph (249 km/h). The hurricane's eyewall impacted the Colombian islands of Providencia and Santa Catalina around this time. Moving along a westward course, Iota slowly weakened and eventually made landfall in Nicaragua with winds of 145 mph (233 km/h) in nearly the same location as Hurricane Eta two weeks prior. Once inland, interaction with the region's mountainous terrain caused the system to rapidly deteriorate and its surface circulation dissipated on November 18. Its remnants persisted another day before last being noted southwest of Guatemala.

References

  1. 1 2 Miner, Todd; Sousounis, Peter J.; Wallman, James; Mann, Greg (February 2000). "Hurricane Huron". Bulletin of the American Meteorological Society. 81 (2): 223–36. Bibcode:2000BAMS...81..223M. doi: 10.1175/1520-0477(2000)081<0223:HH>2.3.CO;2 .
  2. 1 2 3 4 5 6 7 William R. Deedler (August 18, 2004). "Hurricanes in Michigan???". National Weather Service Detroit/Pontiac, MI. Retrieved February 8, 2020.
  3. 1 2 Jonathan Erdman; Eric Chaney (November 17, 2016). "'Hurricane Huron': The Oddest Storm to Ever Hit the Great Lakes?". Weather Underground. Archived from the original on November 22, 2016. Retrieved October 18, 2021.
  4. 1 2 Canadian Hurricane Centre (September 14, 2009). "1941-2". Storm Impact Summaries. Archived from the original on April 21, 2013. Retrieved July 29, 2011.
  5. 1 2 3 Peter Bowyer (2004). "Storm information". Canadian Hurricane Centre. Archived from the original on July 15, 2014. Retrieved June 17, 2009.
  6. 1 2 3 4 5 6 7 8 9 10 11 Todd J. Miner (Penn State University); Peter J. Sousounis; James Wallman; Greg Mann (2000). "Hurricane Huron". Bulletin of the American Meteorological Society. AMS Online Journals. 81 (2): 223–236. Bibcode:2000BAMS...81..223M. doi: 10.1175/1520-0477(2000)081<0223:HH>2.3.CO;2 .
  7. Miland Brown (August 6, 2009). "World History Blog: The Great Lakes Hurricane of 1996". Archived from the original on June 10, 2016. Retrieved August 25, 2016.
  8. Lardinois, Anna (2021). Shipwrecks of the Great Lakes: Tragedies and Legacies from the Inland Seas. Rowman & Littlefield. p. 36. ISBN   978-1-4930-5856-3 . Retrieved October 4, 2022.