MIL-STD-1234

Last updated

MIL-STD-1234 (Military-Standard-1234) is a United States Military Standard that describes the general methods of sampling, inspection, and testing pyrotechnics for conformance with the material requirements of various pyrotechnic specifications.

MIL-STD-1234 was originally approved and published on June 22, 1962 by the Department of Defense. Later, it was revised in 1965, 1967, and 1973.

Related Research Articles

<span class="mw-page-title-main">Work breakdown structure</span> A deliverable-orientated breakdown of a project into smaller components.

A work-breakdown structure (WBS) in project management and systems engineering is a deliverable-oriented breakdown of a project into smaller components. A work breakdown structure is a key project management element that organizes the team's work into manageable sections. The Project Management Body of Knowledge defines the work-breakdown structure as a "hierarchical decomposition of the total scope of work to be carried out by the project team to accomplish the project objectives and create the required deliverables."

<span class="mw-page-title-main">Configuration management</span> Process for maintaining consistency of a product attributes with its design

Configuration management (CM) is a systems engineering process for establishing and maintaining consistency of a product's performance, functional, and physical attributes with its requirements, design, and operational information throughout its life. The CM process is widely used by military engineering organizations to manage changes throughout the system lifecycle of complex systems, such as weapon systems, military vehicles, and information systems. Outside the military, the CM process is also used with IT service management as defined by ITIL, and with other domain models in the civil engineering and other industrial engineering segments such as roads, bridges, canals, dams, and buildings.

<span class="mw-page-title-main">MIL-STD-188</span> Series of U.S. military standards relating to telecommunications

MIL-STD-188 is a series of U.S. military standards relating to telecommunications.

JOVIAL is a high-level programming language based on ALGOL 58, specialized for developing embedded systems. It was a major system programming language through the 1960s and 1970s.

MIL-STD-1750A or 1750A is the formal definition of a 16-bit computer instruction set architecture (ISA), including both required and optional components, as described by the military standard document MIL-STD-1750A (1980). Since August 1996, it has been inactive for new designs.

NATO Joint Military Symbology is the NATO standard for military map symbols. Originally published in 1986 as Allied Procedural Publication 6 (APP-6), NATO Military Symbols for Land Based Systems, the standard has evolved over the years and is currently in its fifth version (APP-6D). The symbols are designed to enhance NATO's joint interoperability by providing a standard set of common symbols. APP-6 constituted a single system of joint military symbology for land, air, space and sea-based formations and units, which can be displayed for either automated map display systems or for manual map marking. It covers all of the joint services and can be used by them.

MIL-STD-1553 is a military standard published by the United States Department of Defense that defines the mechanical, electrical, and functional characteristics of a serial data bus. It was originally designed as an avionic data bus for use with military avionics, but has also become commonly used in spacecraft on-board data handling (OBDH) subsystems, both military and civil, including use on the James Webb space telescope. It features multiple redundant balanced line physical layers, a (differential) network interface, time-division multiplexing, half-duplex command/response protocol, and can handle up to 31 Remote Terminals (devices); 32 is typically designated for broadcast messages. A version of MIL-STD-1553 using optical cabling in place of electrical is known as MIL-STD-1773.

Link 16 is a military tactical data link network used by NATO members and other nations, as allowed by the MIDS International Program Office (IPO). Its specification is part of the family of Tactical Data Links.

MIL-STD-498, Military Standard Software Development and Documentation, was a United States military standard whose purpose was to "establish uniform requirements for software development and documentation." It was released Nov. 8, 1994, and replaced DOD-STD-2167A, DOD-STD-2168, DOD-STD-7935A, and DOD-STD-1703. It was meant as an interim standard, to be in effect for about two years until a commercial standard was developed.

<span class="mw-page-title-main">MIL-STD-105</span> United States defense standard

MIL-STD-105 was a United States defense standard that provided procedures and tables for sampling by attributes based on Walter A. Shewhart, Harry Romig, and Harold F. Dodge sampling inspection theories and mathematical formulas. Widely adopted outside of military procurement applications.

A United States defense standard, often called a military standard, "MIL-STD", "MIL-SPEC", or (informally) "MilSpecs", is used to help achieve standardization objectives by the U.S. Department of Defense.

Environmental stress screening (ESS) refers to the process of exposing a newly manufactured or repaired product or component to stresses such as thermal cycling and vibration in order to force latent defects to manifest themselves by permanent or catastrophic failure during the screening process. The surviving population, upon completion of screening, can be assumed to have a higher reliability than a similar unscreened population.

<span class="mw-page-title-main">MIL-STD-810</span> Military standard

MIL-STD-810, U.S. Department of Defense Test Method Standard, Environmental Engineering Considerations and Laboratory Tests, is a United States Military Standard that emphasizes tailoring an equipment's environmental design and test limits to the conditions that it will experience throughout its service life, and establishing chamber test methods that replicate the effects of environments on the equipment rather than imitating the environments themselves. Although prepared specifically for U.S. military applications, the standard is often applied for commercial products as well.

DOD-STD-2167A, titled "Defense Systems Software Development", was a United States defense standard, published on February 29, 1988, which updated the less well known DOD-STD-2167 published 4 June 1985. This document established "uniform requirements for the software development that are applicable throughout the system life cycle." This revision was written to allow the contractor more flexibility and was a significant reorganization and reduction of the previous revision; e.g.., where the previous revision prescribed pages of design and coding standards, this revision only gave one page of general requirements for the contractor's coding standards; while DOD-STD-2167 listed 11 quality factors to be addressed for each software component in the SRS, DOD-STD-2167A only tasked the contractor to address relevant quality factors in the SRS. Like DOD-STD-2167, it was designed to be used with DOD-STD-2168, "Defense System Software Quality Program".

Logistics Support Analysis (LSA) is a structured approach to increase efficiency of maintenance and reduces the cost of providing support by preplanning all aspects of Integrated Logistics Support. A successful LSA will define those support requirements that are ideal for the system design.

<span class="mw-page-title-main">U.S. Military connector specifications</span>

Electrical or fiber-optic connectors used by U.S. Department of Defense were originally developed in the 1930s for severe aeronautical and tactical service applications, and the Type "AN" (Army-Navy) series set the standard for modern military circular connectors. These connectors, and their evolutionary derivatives, are often called Military Standard, "MIL-STD", or (informally) "MIL-SPEC" or sometimes "MS" connectors. They are now used in aerospace, industrial, marine, and even automotive commercial applications.

MIL-STD-130, "Identification Marking of U.S. Military Property," is a specification that describes markings required on items sold to the Department of Defense (DoD), including the addition, in about 2005, of UII Data Matrix machine-readable information (MRI) requirements. MIL-STD-130 describes the materials allowed, minimum text size and fonts, format, syntax and rules for identifying marks on a part, where to locate this marking plus exceptions and unique situations, such as vehicle identification numbers, cell phone IDs, etc. Other non-identifying markings—such as "this end up"—are covered under MIL-STD-129.

MIL-STD-129 standard is used for maintaining uniformity while marking military equipment and supplies that are transported through ships. This standard has been approved to be used by the United States Department of Defense and all other government agencies. Items must be marked for easy identification before they are transported. The marking helps the military personnel to fill the necessary requisition, when a particular stock goes short of the balance level.

MIL-STD-461 is a United States Military Standard that describes how to test equipment for electromagnetic compatibility.

A United States data item description (DID) is a completed document defining the data deliverables required of a United States Department of Defense contractor. A DID specifically defines the data content, format, and intended use of the data with a primary objective of achieving standardization objectives by the U.S. Department of Defense. The content and format requirements for DIDs are defined within MIL-STD-963C, Data Item Descriptions (2014).