Map projection of the tri-axial ellipsoid

Last updated

In geodesy, a map projection of the tri-axial ellipsoid maps Earth or some other astronomical body modeled as a tri-axial ellipsoid to the plane. Such a model is called the reference ellipsoid. In most cases, reference ellipsoids are spheroids, and sometimes spheres. Massive objects have sufficient gravity to overcome their own rigidity and usually have an oblate ellipsoid shape. However, minor moons or small solar system bodies are not under hydrostatic equilibrium. Usually such bodies have irregular shapes. Furthermore, some of gravitationally rounded objects may have a tri-axial ellipsoid shape due to rapid rotation (such as Haumea) or unidirectional strong tidal forces (such as Io).

Contents

Tri-axial equivalents of various projections

A tri-axial equivalent of the Mercator projection was developed by John P. Snyder. [1]

Equidistant map projections of a tri-axial ellipsoid were developed by Paweł Pędzich. [2]

Conic Projections of a tri-axial ellipsoid were developed by Maxim Nyrtsov. [3]

Equal-area cylindrical and azimuthal projections of the tri-axial ellipsoid were developed by Maxim Nyrtsov. [4]

Jacobi conformal projections were described by Carl Gustav Jacob Jacobi. [5]

See also

Related Research Articles

Geodesy The science of the geometric shape, orientation in space, and gravitational field of Earth

Geodesy is the Earth science of accurately measuring and understanding Earth's geometric shape, orientation in space and gravitational field. The field also incorporates studies of how these properties change over time and equivalent measurements for other planets. Geodynamical phenomena include crustal motion, tides and polar motion, which can be studied by designing global and national control networks, applying space and terrestrial techniques and relying on datums and coordinate systems.

Latitude geographic coordinate specifying north–south position

In geography, latitude is a geographic coordinate that specifies the north–south position of a point on the Earth's surface. Latitude is an angle which ranges from 0° at the Equator to 90° at the poles. Lines of constant latitude, or parallels, run east–west as circles parallel to the equator. Latitude is used together with longitude to specify the precise location of features on the surface of the Earth. On its own, the term latitude should be taken to be the geodetic latitude as defined below. Briefly, geodetic latitude at a point is the angle formed by the vector perpendicular to the ellipsoidal surface from that point, and the equatorial plane. Also defined are six auxiliary latitudes which are used in special applications.

Mercator projection Map projection for navigational use that distorts areas far from the equator

The Mercator projection is a cylindrical map projection presented by Flemish geographer and cartographer Gerardus Mercator in 1569. It became the standard map projection for navigation because of its unique property of representing any course of constant bearing as a straight segment. Such a course, known as a rhumb or, mathematically, a loxodrome, is preferred by navigators because the ship can sail in a constant compass direction to reach its destination, eliminating difficult and error-prone course corrections. Linear scale is constant on the Mercator in every direction around any point, thus preserving the angles and the shapes of small objects and fulfilling the conditions of a conformal map projection. As a side effect, the Mercator projection inflates the size of objects away from the equator. This inflation is very small near the equator, but accelerates with latitude to become infinite at the poles. So, for example, landmasses such as Greenland and Antarctica appear far larger than they actually are relative to landmasses near the equator, such as Central Africa.

Map projection Systematic representation of the surface of a sphere or ellipsoid onto a plane

In cartography, a map projection is a way to flatten a globe's surface into a plane in order to make a map. This requires a systematic transformation of the latitudes and longitudes of locations from the surface of the globe into locations on a plane. All projections of a sphere on a plane necessarily distort the surface in some way and to some extent. Depending on the purpose of the map, some distortions are acceptable and others are not; therefore, different map projections exist in order to preserve some properties of the sphere-like body at the expense of other properties. Every distinct map projection distorts in a distinct way, by definition. The study of map projections is the characterization of these distortions. There is no limit to the number of possible map projections. Projections are a subject of several pure mathematical fields, including differential geometry, projective geometry, and manifolds. However, "map projection" refers specifically to a cartographic projection.

Spheroid Surface formed by rotating an ellipse around one of its axes; special case of ellipsoid

A spheroid, or ellipsoid of revolution, is a quadric surface obtained by rotating an ellipse about one of its principal axes; in other words, an ellipsoid with two equal semi-diameters. A spheroid has circular symmetry.

Figure of the Earth Size and shape used to model the Earth for geodesy

Figure of the Earth is a term of art in geodesy that refers to the size and shape used to model Earth. The size and shape it refers to depend on context, including the precision needed for the model. The sphere is an approximation of the figure of the Earth that is satisfactory for many purposes. Several models with greater accuracy have been developed so that coordinate systems can serve the precise needs of navigation, surveying, cadastre, land use, and various other concerns.

Reference ellipsoid Ellipsoid that approximates the figure of the Earth

In geodesy, a reference ellipsoid is a mathematically defined surface that approximates the geoid, the truer figure of the Earth, or other planetary body. Because of their relative simplicity, reference ellipsoids are used as a preferred surface on which geodetic network computations are performed and point coordinates such as latitude, longitude, and elevation are defined.

Transverse Mercator projection The transverse Mercator projection is the transverse aspect of the standard (or Normal) Mercator projection

The transverse Mercator map projection is an adaptation of the standard Mercator projection. The transverse version is widely used in national and international mapping systems around the world, including the UTM. When paired with a suitable geodetic datum, the transverse Mercator delivers high accuracy in zones less than a few degrees in east-west extent.

Gnomonic projection map projection

A gnomonic map projection displays all great circles as straight lines, resulting in any straight line segment on a gnomonic map showing a geodesic, the shortest route between the segment's two endpoints. This is achieved by casting surface points of the sphere onto a tangent plane, each landing where a ray from the center of the sphere passes through the point on the surface and then on to the plane. No distortion occurs at the tangent point, but distortion increases rapidly away from it. Less than half of the sphere can be projected onto a finite map. Consequently, a rectilinear photographic lens, which is based on the gnomonic principle, cannot image more than 180 degrees.

Equirectangular projection map projection that maps meridians and parallels to vertical and horizontal straight lines, respectively, producing a rectangular grid

The equirectangular projection is a simple map projection attributed to Marinus of Tyre, who Ptolemy claims invented the projection about AD 100. The projection maps meridians to vertical straight lines of constant spacing, and circles of latitude to horizontal straight lines of constant spacing. The projection is neither equal area nor conformal. Because of the distortions introduced by this projection, it has little use in navigation or cadastral mapping and finds its main use in thematic mapping. In particular, the plate carrée has become a standard for global raster datasets, such as Celestia and NASA World Wind, because of the particularly simple relationship between the position of an image pixel on the map and its corresponding geographic location on Earth.

Oblique Mercator projection The oblique Mercator projection is the oblique aspect of the standard (or Normal) Mercator projection

The oblique Mercator map projection is an adaptation of the standard Mercator projection. The oblique version is sometimes used in national mapping systems. When paired with a suitable geodetic datum, the oblique Mercator delivers high accuracy in zones less than a few degrees in arbitary directional extent.

Lambert conformal conic projection map projection

A Lambert conformal conic projection (LCC) is a conic map projection used for aeronautical charts, portions of the State Plane Coordinate System, and many national and regional mapping systems. It is one of seven projections introduced by Johann Heinrich Lambert in his 1772 publication Anmerkungen und Zusätze zur Entwerfung der Land- und Himmelscharten.

Lambert cylindrical equal-area projection

In cartography, the Lambert cylindrical equal-area projection, or Lambert cylindrical projection, is a cylindrical equal-area projection. This projection is undistorted along the equator, which is its standard parallel, but distortion increases rapidly towards the poles. Like any cylindrical projection, it stretches parallels increasingly away from the equator. The poles accrue infinite distortion, becoming lines instead of points.

Chamberlin trimetric projection

The Chamberlin trimetric projection is a map projection where three points are fixed on the globe and the points on the sphere are mapped onto a plane by triangulation. It was developed in 1946 by Wellman Chamberlin for the National Geographic Society. Chamberlin was chief cartographer for the Society from 1964 to 1971. The projection's principal feature is that it compromises between distortions of area, direction, and distance. A Chamberlin trimetric map therefore gives an excellent overall sense of the region being mapped. Many National Geographic Society maps of single continents use this projection.

Two-point equidistant projection type of map projection

The two-point equidistant projection is a map projection first described by Hans Maurer in 1919. It is a generalization of the much simpler azimuthal equidistant projection. In this two-point form, two locus points are chosen by the mapmaker to configure the projection. Distances from the two loci to any other point on the map are correct: that is, they scale to the distances of the same points on the sphere.

In cartography, a conformal map projection is one in which every angle between two curves that cross each other on Earth is preserved in the image of the projection, i.e. the projection is a conformal map in the mathematical sense. For example, if two roads cross each other at a 39° angle, then their images on a map with a conformal projection cross at a 39° angle.

Planetary cartography, or cartography of extraterrestrial objects (CEO), is the cartography of solid objects outside of the Earth. Planetary maps can show any spatially mapped characteristic for extraterrestrial surfaces.

Web Mercator projection Mercator projection variant

Web Mercator, Google Web Mercator, Spherical Mercator, WGS 84 Web Mercator or WGS 84/Pseudo-Mercator is a variant of the Mercator projection and is the de facto standard for Web mapping applications. It rose to prominence when Google Maps adopted it in 2005. It is used by virtually all major online map providers, including Google Maps, Mapbox, Bing Maps, OpenStreetMap, Mapquest, Esri, and many others. Its official EPSG identifier is EPSG:3857, although others have been used historically.

Stereographic projection in cartography

The stereographic projection, also known as the planisphere projection or the azimuthal conformal projection, is a conformal map projection whose use dates back to antiquity. Like the orthographic projection and gnomonic projection, the stereographic projection is an azimuthal projection, and when on a sphere, also a perspective projection.

References

  1. Snyder, J. P. (1986). "Conformal Mapping of the Triaxial Ellipsoid". Survey Review. 28 (217): 130–148. doi:10.1179/sre.1985.28.217.130.
  2. Pędzich, Paweł (2017). "Equidistant map projections of a tri-axial ellipsoid with the use of reduced coordinates". Geodesy and Cartography. 66 (2): 271–290. Bibcode:2017GeCar..66..271P. doi: 10.1515/geocart-2017-0021 .
  3. Nyrtsov, Maxim (Winter 2017). "Conic Projections of the Triaxial Ellipsoid: The Projections for Regional Mapping of Celestial Bodies". Cartographica: The International Journal for Geographic Information and Geovisualization. 52 (4): 322–331. doi:10.3138/cart.52.4.2017-0002.
  4. Nyrtsov, Maxim V. (2015). "Equal-Area Projections of the Triaxial Ellipsoid: First Time Derivation and Implementation of Cylindrical and Azimuthal Projections for Small Solar System Bodies". The Cartographic Journal. 52 (2): 114–124. doi:10.1080/00087041.2015.1119471 . Retrieved 9 February 2019.
  5. Nyrtsov, Maxim V. (2014). "Jacobi Conformal Projection of the Triaxial Ellipsoid: New Projection for Mapping of Small Celestial Bodies". Cartography from Pole to Pole. Springer, Berlin, Heidelberg. pp. 235–246. ISBN   978-3-642-32617-2.