Memory ProteXion

Last updated

For computer memory, Memory ProteXion, found in IBM xSeries servers, is a form of "redundant bit steering". This technology uses redundant bits in a data packet to recover from a DIMM failure.

Memory ProteXion is different from normal ECC error correction in that it uses only 6 bits for ECC, leaving 2 bits behind. These 2 bits can be used to re-route data from failed memory, much like hot spare on a RAID. The ECC is used to reconstruct the data, and the extra bits to store it.

Memory ProteXion, also known as “redundant bit steering”, is the technology behind using redundant bits in a data packet to provide backup in the event of a DIMM failure. One failure does not cause a predictive failure analysis to be issued on the DIMM, but 2 failures and more will issue a PFA to inform the system administrator that a replacement is needed.

See also


Related Research Articles

DDR SDRAM Type of computer memory

Double Data Rate Synchronous Dynamic Random-Access Memory is a double data rate (DDR) synchronous dynamic random-access memory (SDRAM) class of memory integrated circuits used in computers. DDR SDRAM, also retroactively called DDR1 SDRAM, has been superseded by DDR2 SDRAM, DDR3 SDRAM, DDR4 SDRAM and DDR5 SDRAM. None of its successors are forward or backward compatible with DDR1 SDRAM, meaning DDR2, DDR3, DDR4 and DDR5 memory modules will not work in DDR1-equipped motherboards, and vice versa.

DIMM Computer memory module

A dimm, often written as DIMM, commonly called a memory stick or RAM stick, comprises a series of dynamic random-access memory integrated circuits. These modules are mounted on a printed circuit board and designed for use in personal computers, workstations, printers, and servers. They are the predominate method for adding memory into a computer system. The vast majority of dimms are standardized through JEDEC standards, although there are proprietary dimms. Dimms come in a variety of speeds and sizes, but generally are one of two lengths PC which are 133.35 mm (5.25 in) and laptop (SO-DIMM) which are about half the size at 67.60 mm (2.66 in).

SIMM

A SIMM is a type of memory module containing random-access memory used in computers from the early 1980s to the early 2000s. It differs from a dual in-line memory module (DIMM), the most predominant form of memory module since the late 1990s, in that the contacts on a SIMM are redundant on both sides of the module. SIMMs were standardised under the JEDEC JESD-21C standard.

DDR2 SDRAM Second generation of double-data-rate synchronous dynamic random-access memory

Double Data Rate 2 Synchronous Dynamic Random-Access Memory is a double data rate (DDR) synchronous dynamic random-access memory (SDRAM) interface. It superseded the original DDR SDRAM specification, and was itself superseded by DDR3 SDRAM. DDR2 DIMMs are neither forward compatible with DDR3 nor backward compatible with DDR.

Memory scrubbing consists of reading from each computer memory location, correcting bit errors with an error-correcting code (ECC), and writing the corrected data back to the same location.

In the fields of digital electronics and computer hardware, multi-channel memory architecture is a technology that increases the data transfer rate between the DRAM memory and the memory controller by adding more channels of communication between them. Theoretically, this multiplies the data rate by exactly the number of channels present. Dual-channel memory employs two channels. The technique goes back as far as the 1960s having been used in IBM System/360 Model 91 and in CDC 6600.

Registered memory

Registeredmemory modules have a register between the DRAM modules and the system's memory controller. They place less electrical load on the memory controller and allow single systems to remain stable with more memory modules than they would have otherwise. When compared with registered memory, conventional memory is usually referred to as unbuffered memory or unregistered memory. When manufactured as a dual in-line memory module (DIMM), a registered memory module is called an RDIMM, while unregistered memory is called UDIMM or simply DIMM.

Reliability, availability and serviceability (RAS), also known as reliability, availability, and maintainability (RAM), is a computer hardware engineering term involving reliability engineering, high availability, and serviceability design. The phrase was originally used by International Business Machines (IBM) as a term to describe the robustness of their mainframe computers.

Double Data Rate 3 Synchronous Dynamic Random-Access Memory is a type of synchronous dynamic random-access memory (SDRAM) with a high bandwidth interface, and has been in use since 2007. It is the higher-speed successor to DDR and DDR2 and predecessor to DDR4 synchronous dynamic random-access memory (SDRAM) chips. DDR3 SDRAM is neither forward nor backward compatible with any earlier type of random-access memory (RAM) because of different signaling voltages, timings, and other factors.

RAM parity checking is the storing of a redundant parity bit representing the parity of a small amount of computer data stored in random-access memory, and the subsequent comparison of the stored and the computed parity to detect whether a data error has occurred.

In computing, telecommunication, information theory, and coding theory, an error correction code, sometimes error correcting code, (ECC) is used for controlling errors in data over unreliable or noisy communication channels. The central idea is the sender encodes the message with redundant information in the form of an ECC. The redundancy allows the receiver to detect a limited number of errors that may occur anywhere in the message, and often to correct these errors without retransmission. The American mathematician Richard Hamming pioneered this field in the 1940s and invented the first error-correcting code in 1950: the Hamming (7,4) code.

ECC memory Self-correcting computer data storage

Error correction code memory is a type of computer data storage that uses an error correction code (ECC) to detect and correct n-bit data corruption which occurs in memory. ECC memory is used in most computers where data corruption cannot be tolerated, like industrial control applications, critical databases, and infrastructural memory caches.

Chipkill is IBM's trademark for a form of advanced error checking and correcting (ECC) computer memory technology that protects computer memory systems from any single memory chip failure as well as multi-bit errors from any portion of a single memory chip. One simple scheme to perform this function scatters the bits of a Hamming code ECC word across multiple memory chips, such that the failure of any single memory chip will affect only one ECC bit per word. This allows memory contents to be reconstructed despite the complete failure of one chip. Typical implementations use more advanced codes, such as a BCH code, that can correct multiple bits with less overhead.

The Origin 3000 and the Onyx 3000 is a family of mid-range and high-end computers developed and manufactured by SGI. The Origin 3000 is a server, and the Onyx 3000 is a visualization system. Both systems were introduced in July 2000 to succeed the Origin 2000 and the Onyx2 respectively. These systems ran the IRIX 6.5 Advanced Server Environment operating system. Entry-level variants of these systems based on the same architecture but with a different hardware implementation are known as the Origin 300 and Onyx 300. The Origin 3000 was succeeded by the Altix 3000 in 2004 and the last model was discontinued on 29 December 2006, while the Onyx 3000 was succeeded by the Onyx4 and the Itanium-based Prism in 2004 and the last model was discontinued on 25 March 2005.

A memory rank is a set of DRAM chips connected to the same chip select, which are therefore accessed simultaneously. In practice all DRAM chips share all of the other command and control signals, and only the chip select pins for each rank are separate.

A redundant array of independent memory (RAIM) is a design feature found in certain computers' main random access memory. RAIM utilizes additional memory modules and striping algorithms to protect against the failure of any particular module and keep the memory system operating continuously. RAIM is similar in concept to a redundant array of independent disks (RAID), which protects against the failure of a disk drive, but in the case of memory it supports several DRAM device chipkills and entire memory channel failures. RAIM is much more robust than parity checking and ECC memory technologies which cannot protect against many varieties of memory failures.

In the design of modern computers, memory geometry describes the internal structure of random-access memory. Memory geometry is of concern to consumers upgrading their computers, since older memory controllers may not be compatible with later products. Memory geometry terminology can be confusing because of the number of overlapping terms.

The ULLtraDIMM is a solid state storage device from SanDisk that connects flash storage directly onto the DDR3 memory bus. Unlike traditional PCIe Flash Storage devices, the ULLtraDIMM is plugged directly into an industry standard RDIMM memory bus slot in a server.

Double Data Rate 5 Synchronous Dynamic Random-Access Memory is a type of synchronous dynamic random-access memory. Compared to its predecessor DDR4 SDRAM, DDR5 was planned to reduce power consumption, while doubling bandwidth. The standard, originally targeted for 2018, was released on 14 July 2020.