Millman's theorem

Last updated

In electrical engineering, Millman's theorem [1] (or the parallel generator theorem) is a method to simplify the solution of a circuit. Specifically, Millman's theorem is used to compute the voltage at the ends of a circuit made up of only branches in parallel.

Contents

It is named after Jacob Millman, who proved the theorem.

Explanation

Application of Millman's theorem Millman's theorem, general.svg
Application of Millman's theorem

Let be the generators' voltages. Let be the resistances on the branches with voltage generators . Then Millman states that the voltage at the ends of the circuit is given by: [2]

That is, the sum of the short circuit currents in branch divided by the sum of the conductances in each branch.

It can be proved by considering the circuit as a single supernode. [3] Then, according to Ohm and Kirchhoff, the voltage between the ends of the circuit is equal to the total current entering the supernode divided by the total equivalent conductance of the supernode. The total current is the sum of the currents in each branch. The total equivalent conductance of the supernode is the sum of the conductance of each branch, since all the branches are in parallel. [4]

Branch variations

Current sources

One method of deriving Millman's theorem starts by converting all the branches to current sources (which can be done using Norton's theorem). A branch that is already a current source is simply not converted. In the expression above, this is equivalent to replacing the term in the numerator of the expression above with the current of the current generator, where the kth branch is the branch with the current generator. The parallel conductance of the current source is added to the denominator as for the series conductance of the voltage sources. An ideal current source has zero conductance (infinite resistance) and so adds nothing to the denominator. [5]

Ideal voltage sources

If one of the branches is an ideal voltage source, Millman's theorem cannot be used, but in this case the solution is trivial, the voltage at the output is forced to the voltage of the ideal voltage source. The theorem does not work with ideal voltage sources because such sources have zero resistance (infinite conductance) so the summation of both the numerator and denominator are infinite and the result is indeterminate. [6]

See also

Related Research Articles

Electrical network Assemblage of connected electrical elements

An electrical network is an interconnection of electrical components or a model of such an interconnection, consisting of electrical elements. An electrical circuit is a network consisting of a closed loop, giving a return path for the current. Linear electrical networks, a special type consisting only of sources, linear lumped elements, and linear distributed elements, have the property that signals are linearly superimposable. They are thus more easily analyzed, using powerful frequency domain methods such as Laplace transforms, to determine DC response, AC response, and transient response.

Electrical elements are conceptual abstractions representing idealized electrical components, such as resistors, capacitors, and inductors, used in the analysis of electrical networks. All electrical networks can be analyzed as multiple electrical elements interconnected by wires. Where the elements roughly correspond to real components, the representation can be in the form of a schematic diagram or circuit diagram. This is called a lumped-element circuit model. In other cases, infinitesimal elements are used to model the network, in a distributed-element model.

Nortons theorem DC circuit analysis technique

In direct-current circuit theory, Norton's theorem, also called the Mayer–Norton theorem, is a simplification that can be applied to networks made of linear time-invariant resistances, voltage sources, and current sources. At a pair of terminals of the network, it can be replaced by a current source and a single resistor in parallel.

Thévenins theorem Theorem in electrical circuit analysis

As originally stated in terms of direct-current resistive circuits only, Thévenin's theorem states that "For any linear electrical network containing only voltage sources, current sources and resistances can be replaced at terminals A–B by an equivalent combination of a voltage source Vth in a series connection with a resistance Rth."

The Y-Δ transform, also written wye-delta and also known by many other names, is a mathematical technique to simplify the analysis of an electrical network. The name derives from the shapes of the circuit diagrams, which look respectively like the letter Y and the Greek capital letter Δ. This circuit transformation theory was published by Arthur Edwin Kennelly in 1899. It is widely used in analysis of three-phase electric power circuits.

Series and parallel circuits Types of electrical circuits

Two-terminal components and electrical networks can be connected in series or parallel. The resulting electrical network will have two terminals, and itself can participate in a series or parallel topology. Whether a two-terminal "object" is an electrical component or an electrical network is a matter of perspective. This article will use "component" to refer to a two-terminal "object" that participate in the series/parallel networks.

Common collector

In electronics, a common collector amplifier is one of three basic single-stage bipolar junction transistor (BJT) amplifier topologies, typically used as a voltage buffer.

Output impedance

The output impedance of an electrical network is the measure of the opposition to current flow (impedance), both static (resistance) and dynamic (reactance), into the load network being connected that is internal to the electrical source. The output impedance is a measure of the source's propensity to drop in voltage when the load draws current, the source network being the portion of the network that transmits and the load network being the portion of the network that consumes.

A network, in the context of electrical engineering and electronics, is a collection of interconnected components. Network analysis is the process of finding the voltages across, and the currents through, all network components. There are many techniques for calculating these values. However, for the most part, the techniques assume linear components. Except where stated, the methods described in this article are applicable only to linear network analysis.

Current source Electronic circuit which delivers or absorbs electric current regardless of voltage

A current source is an electronic circuit that delivers or absorbs an electric current which is independent of the voltage across it.

Voltage source Two-terminal electrical device able to maintain a fixed voltage

A voltage source is a two-terminal device which can maintain a fixed voltage. An ideal voltage source can maintain the fixed voltage independent of the load resistance or the output current. However, a real-world voltage source cannot supply unlimited current.

Nodal analysis

In electric circuits analysis, nodal analysis, node-voltage analysis, or the branch current method is a method of determining the voltage between "nodes" in an electrical circuit in terms of the branch currents.

Mathematical methods are integral to the study of electronics.

The negative impedance converter (NIC) is an active circuit which injects energy into circuits in contrast to an ordinary load that consumes energy from them. This is achieved by adding or subtracting excessive varying voltage in series to the voltage drop across an equivalent positive impedance. This reverses the voltage polarity or the current direction of the port and introduces a phase shift of 180° (inversion) between the voltage and the current for any signal generator. The two versions obtained are accordingly a negative impedance converter with voltage inversion (VNIC) and a negative impedance converter with current inversion (INIC). The basic circuit of an INIC and its analysis is shown below.

Current divider

In electronics, a current divider is a simple linear circuit that produces an output current (IX) that is a fraction of its input current (IT). Current division refers to the splitting of current between the branches of the divider. The currents in the various branches of such a circuit will always divide in such a way as to minimize the total energy expended.

The superposition theorem is a derived result of the superposition principle suited to the network analysis of electrical circuits. The superposition theorem states that for a linear system the response in any branch of a bilateral linear circuit having more than one independent source equals the algebraic sum of the responses caused by each independent source acting alone, where all the other independent sources are replaced by their internal impedances.

Bartlett's bisection theorem is an electrical theorem in network analysis attributed to Albert Charles Bartlett. The theorem shows that any symmetrical two-port network can be transformed into a lattice network. The theorem often appears in filter theory where the lattice network is sometimes known as a filter X-section following the common filter theory practice of naming sections after alphabetic letters to which they bear a resemblance.

The Miller theorem refers to the process of creating equivalent circuits. It asserts that a floating impedance element, supplied by two voltage sources connected in series, may be split into two grounded elements with corresponding impedances. There is also a dual Miller theorem with regards to impedance supplied by two current sources connected in parallel. The two versions are based on the two Kirchhoff's circuit laws.

Reciprocity in electrical networks is a property of a circuit that relates voltages and currents at two points. The reciprocity theorem states that the current at one point in a circuit due to a voltage at a second point is the same as the current at the second point due to the same voltage at the first. The reciprocity theorem is valid for almost all passive networks. The reciprocity theorem is a feature of a more general principle of reciprocity in electromagnetism.

The general time- and transfer-constants (TTC) analysis is the generalized version of the Cochran-Grabel (CG) method, which itself is the generalized version of zero-value time-constants (ZVT), which in turn is the generalization of the open-circuit time constant method (OCT). While the other methods mentioned provide varying terms of only the denominator of an arbitrary transfer function, TTC can be used to determine every term both in the numerator and the denominator. Its demoninator terms are the same as that of Cochran-Grabel method, when stated in terms of time-constants. however, the numerator terms are determined using a combination of transfer constants and time constants, where the time constants are the same as those in CG method. Transfer constants are low frequency ratios of the output variable to input variable under different open- and short-circuited active elements.

References

  1. Millman, Jacob (1940). "A Useful Network Theorem". Proceedings of the IRE. 28 (9): 413–417. doi:10.1109/JRPROC.1940.225885.
  2. Bakshi & Bakshi, p. 7-28
  3. Bakshi & Bakshi, p. 3-7
  4. Ghosh & Chakraborty, p. 172
  5. Wadhwa, p. 88
  6. Singh, p. 64