Miriam M. Unterlass

Last updated

Miriam M. Unterlass (* 22. October 1986 in Erlangen) is a German chemist and full professor of solid state chemistry at the University of Konstanz. [1] [2]

Life

Miriam M. Unterlass studied chemistry, process engineering and materials science in Würzburg, Southampton, and Lyon. [3] She then completed her PhD with the thesis "From monomer salts and their tectonic crystals to aromatic polyimides: development of neoteric synthesis routes" at the Max Planck Institute of Colloids and Interfaces and did a postdoc at the École supérieure de physique et de chimie industrielles de la ville de Paris. [3] [4] [5] In 2013, she started as an independent group leader at the Vienna University of Technology and habilitated there in materials chemistry in 2018, becoming an assistant professor there with tenure in 2019. [3] Since 2018, she has been a member of the Young Academy of the Austrian Academy of Sciences.  In 2021, she became a full professor of solid state chemistry at the University of Konstanz. [1] She has received several prizes and awards during this time, including the PHÖNIX Prize in the "Prototypes" category and being named a "Young Talent 2016" by the journal Marcomolecular Chemistry and Physics. [1] In 2023, she received the Roy Somiya Award 2023 from the International Solvothermal and Hydrothermal Association (ISHA) for her contributions to solvothermal and hydrothermal research. [6]

Related Research Articles

<span class="mw-page-title-main">Imide</span> Class of chemical compounds

In organic chemistry, an imide is a functional group consisting of two acyl groups bound to nitrogen. The compounds are structurally related to acid anhydrides, although imides are more resistant to hydrolysis. In terms of commercial applications, imides are best known as components of high-strength polymers, called polyimides. Inorganic imides are also known as solid state or gaseous compounds, and the imido group (=NH) can also act as a ligand.

<span class="mw-page-title-main">Aluminium chloride</span> Chemical compound

Aluminium chloride, also known as aluminium trichloride, is an inorganic compound with the formula AlCl3. It forms a hexahydrate with the formula [Al(H2O)6]Cl3, containing six water molecules of hydration. Both the anhydrous form and the hexahydrate are colourless crystals, but samples are often contaminated with iron(III) chloride, giving them a yellow colour.

<span class="mw-page-title-main">Manganese(III) fluoride</span> Chemical compound

Manganese(III) fluoride (also known as Manganese trifluoride) is the inorganic compound with the formula MnF3. This red/purplish solid is useful for converting hydrocarbons into fluorocarbons, i.e., it is a fluorination agent. It forms a hydrate and many derivatives.

<span class="mw-page-title-main">Biphenyl</span> Chemical compound

Biphenyl is an organic compound that forms colorless crystals. Particularly in older literature, compounds containing the functional group consisting of biphenyl less one hydrogen may use the prefixes xenyl or diphenylyl.

<span class="mw-page-title-main">Polyester</span> Category of polymers, in which the monomers are joined together by ester links

Polyester is a category of polymers that contain the ester functional group in every repeat unit of their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include naturally occurring chemicals, such as in plants and insects, as well as synthetics such as polybutyrate. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. Synthetic polyesters are used extensively in clothing.

<span class="mw-page-title-main">Sodium phosphide</span> Chemical compound

Sodium phosphide is the inorganic compound with the formula Na3P. It is a black solid. It is often described as Na+ salt of the P3− anion. Na3P is a source of the highly reactive phosphide anion. It should not be confused with sodium phosphate, Na3PO4.

<span class="mw-page-title-main">Nitrosobenzene</span> Chemical compound

Nitrosobenzene is the organic compound with the formula C6H5NO. It is one of the prototypical organic nitroso compounds. Characteristic of its functional group, it is a dark green species that exists in equilibrium with its pale yellow dimer. Both monomer and dimer are diamagnetic.

<span class="mw-page-title-main">Tantalum pentafluoride</span> Chemical compound

Tantalum(V) fluoride is the inorganic compound with the formula TaF5. It is one of the principal molecular compounds of tantalum. Characteristic of some other pentafluorides, the compound is volatile but exists as an oligomer in the solid state.

A thermoset polymer matrix is a synthetic polymer reinforcement where polymers act as binder or matrix to secure in place incorporated particulates, fibres or other reinforcements. They were first developed for structural applications, such as glass-reinforced plastic radar domes on aircraft and graphite-epoxy payload bay doors on the Space Shuttle.

<span class="mw-page-title-main">Croconic acid</span> Chemical compound

Croconic acid is a chemical compound with formula C5H2O5 or (C=O)3(COH)2. It has a cyclopentene backbone with two hydroxyl groups adjacent to the double bond and three ketone groups on the remaining carbon atoms. It is sensitive to light, soluble in water and ethanol and forms yellow crystals that decompose at 212 °C.

<span class="mw-page-title-main">Croconate violet</span>

Croconate violet or 1,3-bis(dicyanomethylene)croconate is a divalent anion with chemical formula C
11
N
4
O2−
3
or ((N≡C−)2C=)2(C5O3)2−. It is one of the pseudo-oxocarbon anions, as it can be described as a derivative of the croconate oxocarbon anion C
5
O2−
5
through the replacement of two oxygen atoms by dicyanomethylene groups =C(−C≡N)2. Its systematic name is 3,5-bis(dicyanomethylene)-1,2,4-trionate. The term croconate violet as a dye name specifically refers to the dipotassium salt K
2
C
11
N
4
O
3
.

<span class="mw-page-title-main">Rhodocene</span> Organometallic chemical compound

Rhodocene is a chemical compound with the formula [Rh(C5H5)2]. Each molecule contains an atom of rhodium bound between two planar aromatic systems of five carbon atoms known as cyclopentadienyl rings in a sandwich arrangement. It is an organometallic compound as it has (haptic) covalent rhodium–carbon bonds. The [Rh(C5H5)2] radical is found above 150 °C (302 °F) or when trapped by cooling to liquid nitrogen temperatures (−196 °C [−321 °F]). At room temperature, pairs of these radicals join via their cyclopentadienyl rings to form a dimer, a yellow solid.

A high-refractive-index polymer (HRIP) is a polymer that has a refractive index greater than 1.50.

<span class="mw-page-title-main">Polyfluorene</span> Chemical compound

Polyfluorene is a polymer with formula (C13H8)n, consisting of fluorene units linked in a linear chain — specifically, at carbon atoms 2 and 7 in the standard fluorene numbering. It can also be described as a chain of benzene rings linked in para positions with an extra methylene bridge connecting every pair of rings.

<span class="mw-page-title-main">Cobalt oxide nanoparticle</span>

In materials and electric battery research, cobalt oxide nanoparticles usually refers to particles of cobalt(II,III) oxide Co
3
O
4
of nanometer size, with various shapes and crystal structures.

The sulfate nitrates are a family of double salts that contain both sulfate and nitrate ions (NO3, SO42−). They are in the class of mixed anion compounds. A few rare minerals are in this class. Two sulfate nitrates are in the class of anthropogenic compounds, accidentally made as a result of human activities in fertilizers that are a mix of ammonium nitrate and ammonium sulfate, and also in the atmosphere as polluting ammonia, nitrogen dioxide, and sulfur dioxide react with the oxygen and water there to form solid particles. The nitro group (NO3) can act as a ligand, and complexes containing it can form salts with sulfate.

The borophosphates are mixed anion compounds containing borate and phosphate anions, which may be joined together by a common oxygen atom. Compounds that contain water or hydroxy groups can also be included in the class of compounds.

Sulfidostannates, or thiostannates are chemical compounds containing anions composed of tin linked with sulfur. They can be considered as stannates with sulfur substituting for oxygen. Related compounds include the thiosilicates, and thiogermanates, and by varying the chalcogen: selenostannates, and tellurostannates. Oxothiostannates have oxygen in addition to sulfur. Thiostannates can be classed as chalcogenidometalates, thiometallates, chalcogenidotetrelates, thiotetrelates, and chalcogenidostannates. Tin is almost always in the +4 oxidation state in thiostannates, although a couple of mixed sulfides in the +2 state are known,

The oxalate phosphites are chemical compounds containing oxalate and phosphite anions. They are also called oxalatophosphites or phosphite oxalates. Oxalate phosphates can form metal organic framework compounds.

Sulfidogermanates or thiogermanates are chemical compounds containing anions with sulfur atoms bound to germanium. They are in the class of chalcogenidotetrelates. Related compounds include thiosilicates, thiostannates, selenidogermanates, telluridogermanates and selenidostannates.

References

  1. 1 2 3 "Miriam M. Unterlass". oeaw.ac.at. Retrieved 2023-09-16.
  2. "FWF Wissenschaftsfonds" (PDF). Retrieved 2023-09-16.
  3. 1 2 3 "Kurzlebenslauf Miriam M. Unterlass" (PDF). oeaw.ac.at. Retrieved 2023-09-16.
  4. "Academia Net Eintrag". academia-net.org. Retrieved 2023-09-16.
  5. Miriam M. Unterlass, From monomer salts and their tectonic crystals to aromatic polyimides: development of neoteric synthesis routes , retrieved 2023-09-16
  6. "Roy-Somiya Award 2023 - UnterlassLAB". unterlasslab.com. 2023-09-15. Retrieved 2023-09-16.