N-Step-SCAN

Last updated

N-Step-SCAN (also referred to as N-Step LOOK) is a disk scheduling algorithm to determine the motion of the disk's arm and head in servicing read and write requests. It segments the request queue into subqueues of length N. Breaking the queue into segments of N requests makes service guarantees possible. Subsequent requests entering the request queue won't get pushed into N sized subqueues which are already full by the elevator algorithm. As such, starvation is eliminated and guarantees of service within N requests is possible.

Contents

Another way to look at N-step SCAN is this: A buffer for N requests is kept. All the requests in this buffer are serviced in any particular sweep. All the incoming requests in this period are not added to this buffer but are kept up in a separate buffer. When these top N requests are serviced, the IO scheduler chooses the next N requests and this process continues. This allows for better throughput and avoids starvation.

Analysis

N-Step-SCAN along with FSCAN prevents "arm stickiness" unlike SSTF, SCAN, and C-SCAN.

See also

Other variations include:

Related Research Articles

FIFO (computing and electronics) scheduling algorithm

FIFO – an acronym for first in, first out – in computing and in systems theory, is a method for organising the manipulation of a data structure – often, specifically a data buffer – where the oldest (first) entry, or 'head' of the queue, is processed first.

A real-time operating system (RTOS) is an operating system (OS) intended to serve real-time applications that process data as it comes in, typically without buffer delays. Processing time requirements are measured in tenths of seconds or shorter increments of time. A real-time system is a time-bound system which has well-defined, fixed time constraints. Processing must be done within the defined constraints or the system will fail. They either are event-driven or time-sharing. Event-driven systems switch between tasks based on their priorities, while time-sharing systems switch the task based on clock interrupts. Most RTOSs use a pre-emptive scheduling algorithm.

In computing, scheduling is the method by which work is assigned to resources that complete the work. The work may be virtual computation elements such as threads, processes or data flows, which are in turn scheduled onto hardware resources such as processors, network links or expansion cards.

Round-robin scheduling is an interlaboratory comparison for certification or validation of tests

Round-robin (RR) is one of the algorithms employed by process and network schedulers in computing. As the term is generally used, time slices are assigned to each process in equal portions and in circular order, handling all processes without priority. Round-robin scheduling is simple, easy to implement, and starvation-free. Round-robin scheduling can be applied to other scheduling problems, such as data packet scheduling in computer networks. It is an operating system concept.

Network congestion in data networking and queueing theory is the reduced quality of service that occurs when a network node or link is carrying more data than it can handle. Typical effects include queueing delay, packet loss or the blocking of new connections. A consequence of congestion is that an incremental increase in offered load leads either only to a small increase or even a decrease in network throughput.

In computer science, resource starvation is a problem encountered in concurrent computing where a process is perpetually denied necessary resources to process its work. Starvation may be caused by errors in a scheduling or mutual exclusion algorithm, but can also be caused by resource leaks, and can be intentionally caused via a denial-of-service attack such as a fork bomb.

In computer science, an algorithm is called non-blocking if failure or suspension of any thread cannot cause failure or suspension of another thread; for some operations, these algorithms provide a useful alternative to traditional blocking implementations. A non-blocking algorithm is lock-free if there is guaranteed system-wide progress, and wait-free if there is also guaranteed per-thread progress.

Completely Fair Queuing (CFQ) is an I/O scheduler for the Linux kernel which was written in 2003 by Jens Axboe.

In computing, cache algorithms are optimizing instructions, or algorithms, that a computer program or a hardware-maintained structure can utilize in order to manage a cache of information stored on the computer. Caching improves performance by keeping recent or often-used data items in memory locations that are faster or computationally cheaper to access than normal memory stores. When the cache is full, the algorithm must choose which items to discard to make room for the new ones.

Native Command Queuing

In computing, Native Command Queuing (NCQ) is an extension of the Serial ATA protocol allowing hard disk drives to internally optimize the order in which received read and write commands are executed. This can reduce the amount of unnecessary drive head movement, resulting in increased performance for workloads where multiple simultaneous read/write requests are outstanding, most often occurring in server-type applications.

Shortest seek first is a secondary storage scheduling algorithm to determine the motion of the disk's arm and head in servicing read and write requests.

The elevator algorithm is a disk-scheduling algorithm to determine the motion of the disk's arm and head in servicing read and write requests.

Quicksort A divide and conquer sorting algorithm

Quicksort is an efficient sorting algorithm. Developed by British computer scientist Tony Hoare in 1959 and published in 1961, it is still a commonly used algorithm for sorting. When implemented well, it can be about two or three times faster than its main competitors, merge sort and heapsort.

Tagged Command Queuing (TCQ) is a technology built into certain ATA and SCSI hard drives. It allows the operating system to send multiple read and write requests to a hard drive. ATA TCQ is not identical in function to the more efficient Native Command Queuing (NCQ) used by SATA drives. SCSI TCQ does not suffer from the same limitations as ATA TCQ.

FScan is a disk scheduling algorithm to determine the motion of the disk's arm and head in servicing read and write requests. It uses two sub-queues. During the scan, all of the requests are in the first queue and all new requests are put into the second queue. Thus, service of new requests is deferred until all of the old requests have been processed. When the scan ends, the arm is taken to the first queue entries and is started all over again.

Disk buffer high-speed memory embedded in a computer drive used to improve performance

In computer storage, disk buffer is the embedded memory in a hard disk drive (HDD) acting as a buffer between the rest of the computer and the physical hard disk platter that is used for storage. Modern hard disk drives come with 8 to 256 MiB of such memory, and solid-state drives come with up to 4 GB of cache memory.

I/O scheduling method that computer operating systems use to decide in which order the block I/O operations will be submitted to storage volumes ios

Input/output (I/O) scheduling is the method that computer operating systems use to decide in which order the block I/O operations will be submitted to storage volumes. I/O scheduling is sometimes called disk scheduling.

The deadline scheduler is an I/O scheduler for the Linux kernel which was written in 2002 by Jens Axboe.

LOOK is a disk scheduling algorithm used to determine the order in which new disk read and write requests are processed.

Network scheduler arbiter on a node in packet switching communication network

A network scheduler, also called packet scheduler, queueing discipline, qdisc or queueing algorithm, is an arbiter on a node in packet switching communication network. It manages the sequence of network packets in the transmit and receive queues of the network interface controller. There are several network schedulers available for the different operating systems, that implement many of the existing network scheduling algorithms.

References