Nagata's conjecture on curves

Last updated

In mathematics, the Nagata conjecture on curves, named after Masayoshi Nagata, governs the minimal degree required for a plane algebraic curve to pass through a collection of very general points with prescribed multiplicities.

Contents

History

Nagata arrived at the conjecture via work on the 14th problem of Hilbert, which asks whether the invariant ring of a linear group action on the polynomial ring k[x1, ..., xn] over some field k is finitely generated. Nagata published the conjecture in a 1959 paper in the American Journal of Mathematics, in which he presented a counterexample to Hilbert's 14th problem.

Statement

Nagata Conjecture. Suppose p1, ..., pr are very general points in P2 and that m1, ..., mr are given positive integers. Then for r > 9 any curve C in P2 that passes through each of the points pi with multiplicity mi must satisfy

The condition r > 9 is necessary: The cases r > 9 and r ≤ 9 are distinguished by whether or not the anti-canonical bundle on the blowup of P2 at a collection of r points is nef. In the case where r ≤ 9, the cone theorem essentially gives a complete description of the cone of curves of the blow-up of the plane.

Current status

The only case when this is known to hold is when r is a perfect square, which was proved by Nagata. Despite much interest, the other cases remain open. A more modern formulation of this conjecture is often given in terms of Seshadri constants and has been generalised to other surfaces under the name of the Nagata–Biran conjecture.

Related Research Articles

Bézout's theorem is a statement in algebraic geometry concerning the number of common zeros of n polynomials in n indeterminates. In its original form the theorem states that in general the number of common zeros equals the product of the degrees of the polynomials. It is named after Étienne Bézout.

The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It relates the complex analysis of a connected compact Riemann surface with the surface's purely topological genus g, in a way that can be carried over into purely algebraic settings.

Algebraic variety Mathematical object studied in the field of algebraic geometry

Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.

Projective variety

In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .

In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.

In mathematics, a Cohen–Macaulay ring is a commutative ring with some of the algebro-geometric properties of a smooth variety, such as local equidimensionality. Under mild assumptions, a local ring is Cohen–Macaulay exactly when it is a finitely generated free module over a regular local subring. Cohen–Macaulay rings play a central role in commutative algebra: they form a very broad class, and yet they are well understood in many ways.

In mathematics, a del Pezzo surface or Fano surface is a two-dimensional Fano variety, in other words a non-singular projective algebraic surface with ample anticanonical divisor class. They are in some sense the opposite of surfaces of general type, whose canonical class is big.

In mathematics, geometric invariant theory is a method for constructing quotients by group actions in algebraic geometry, used to construct moduli spaces. It was developed by David Mumford in 1965, using ideas from the paper in classical invariant theory.

In mathematics, Hilbert's fourteenth problem, that is, number 14 of Hilbert's problems proposed in 1900, asks whether certain algebras are finitely generated.

Arithmetic geometry A branch of algebraic geometry focused on problems in number theory

In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic varieties.

In mathematics, particularly in the field of algebraic geometry, a Chow variety is an algebraic variety whose points correspond to effective algebraic cycles of fixed dimension and degree on a given projective space. More precisely, the Chow variety is the fine moduli variety parametrizing all effective algebraic cycles of dimension and degree in .

In number theory and algebraic geometry, a rational point of an algebraic variety is a point whose coordinates belong to a given field. If the field is not mentioned, the field of rational numbers is generally understood. If the field is the field of real numbers, a rational point is more commonly called a real point.

In mathematics, enumerative geometry is the branch of algebraic geometry concerned with counting numbers of solutions to geometric questions, mainly by means of intersection theory.

Masayoshi Nagata was a Japanese mathematician, known for his work in the field of commutative algebra.

In mathematics, real algebraic geometry is the sub-branch of algebraic geometry studying real algebraic sets, i.e. real-number solutions to algebraic equations with real-number coefficients, and mappings between them.

Resolution of singularities

In algebraic geometry, the problem of resolution of singularities asks whether every algebraic variety V has a resolution, a non-singular variety W with a proper birational map WV. For varieties over fields of characteristic 0 this was proved in Hironaka (1964), while for varieties over fields of characteristic p it is an open problem in dimensions at least 4.

In mathematics, a commutative ring R is catenary if for any pair of prime ideals

In mathematics, a Henselian ring is a local ring in which Hensel's lemma holds. They were introduced by Azumaya (1951), who named them after Kurt Hensel. Azumaya originally allowed Henselian rings to be non-commutative, but most authors now restrict them to be commutative.

In algebraic geometry, a field of mathematics, the AF+BG theorem is a result of Max Noether that asserts that, if the equation of an algebraic curve in the complex projective plane belongs locally to the ideal generated by the equations of two other algebraic curves, then it belongs globally to this ideal.

References