Natality in population ecology

Last updated

Natality in population ecology is the scientific term for birth rate. Along with mortality rate, natality rate is used to calculate the dynamics of a population. They are the key factors in determining whether a population is increasing, decreasing or staying the same in size. Natality is the greatest influence on a population's increase. Natality is shown as a crude birth rate or specific birth rate. Crude birth rate is used when calculating population size (number of births per 1000 population/year), whereas specific birth rate is used relative to a specific criterion such as age. By calculating specific birth rate, the results are seen in an age-specific schedule of births.

Contents

Definitions

Animal natality

Specific birth rate is used when calculating animal natality. The criterion used is age. Animal natality is expressed as an age-specific schedule of births. This is represented by the quantity of young/unit of time by females in various age classes. The age-specific birth schedule will count females that have only given birth to females. Showing the number of females that have been born relative to the previous generation will show how much of that generation may have the ability to reproduce. To construct the age-specific schedule, the average number of females born must be calculated. A survivorship column must also be included to construct a fertility table. Taking the survivorship column and the mx values from the life table, the number of offspring will be shown, giving us the natality rate.

Larger implications

Calculating natality of animals such as these polar bear cubs can help with preservation efforts. Ursus maritimus us fish.jpg
Calculating natality of animals such as these polar bear cubs can help with preservation efforts.

Calculating Natality for Animals has become an important part of the research for preservation of species. Studies have been conducted to determine whether a species may be going extinct because of climate or availability of resources. Measuring the natality of a species during extreme conditions such as drastic climate shift or a decrease in prey density will show scientists the measures that need to be taken to keep that species alive. Studies have been conducted about the Polar bear population in Svalbard, Norway from 1988 to 2002 (Derocher 2005). As the average adult ages of both female and male increased, the natality rate decreased. Due to this observation, there was an interest in discovering why. The study was able to correlate the density of ringed seals, which are the polar bears' main prey, to the low natality rates.

Plant natality

Plants’ natality is more difficult to determine than animals. The factors that make it difficult to measure are:

Plant natality is an uncertain factor to measure. The time it takes for a plant to germinate its seeds may be extended over too long of a time period for accurate measurement.

Natality in humans

Calculating and concluding the natality rate of humans is similar to animals. Age-specific schedules are constructed when determining growth rate. It can be used to find the effects that environmental chemicals/toxins have on women of a childbearing age (Axelrad 2010). Birth rates are helpful in making government policies regarding population growth. The birth rate is an item of concern and policy for a number of national governments. Some, including those of Italy and Malaysia, seek to increase the national birth rate using measures such as financial incentives or provision of support services to new mothers. Conversely, other countries have policies to reduce the birth rate, for example, China's one child policy. Measures such as improved information about and availability of birth control have achieved similar results in countries such as Iran.

Calculations where natality is a factor

Related Research Articles

Life expectancy Measure of average lifespan in a given population

Life expectancy is a statistical measure of the average time an organism is expected to live, based on the year of its birth, its current age, and other demographic factors like sex. The most commonly used measure is life expectancy at birth (LEB), which can be defined in two ways. Cohort LEB is the mean length of life of a birth cohort and can be computed only for cohorts born so long ago that all their members have died. Period LEB is the mean length of life of a hypothetical cohort assumed to be exposed, from birth through death, to the mortality rates observed at a given year.

Polar bear Species of bear native largely to the Arctic Circle

The polar bear is a hypercarnivorous bear whose native range lies largely within the Arctic Circle, encompassing the Arctic Ocean, its surrounding seas and surrounding land masses. It is the largest extant bear species, as well as the largest extant land carnivore. A boar weighs around 350–700 kg (770–1,540 lb), while a sow is about half that size. Although it is the sister species of the brown bear, it has evolved to occupy a narrower ecological niche, with many body characteristics adapted for cold temperatures, for moving across snow, ice and open water, and for hunting seals, which make up most of its diet. Although most polar bears are born on land, they spend most of their time on the sea ice. Their scientific name means "maritime bear" and derives from this fact. Polar bears hunt their preferred food of seals from the edge of sea ice, often living off fat reserves when no sea ice is present. Because of their dependence on the sea ice, polar bears are classified as marine mammals.

Demography Science that deals with populations and their structures, statistically and theoretically

Demography is the statistical study of populations, especially human beings.

The carrying capacity of an environment is the maximum population size of a biological species that can be sustained by that specific environment, given the food, habitat, water, and other resources available. The carrying capacity is defined as the environment's maximal load, which in population ecology corresponds to the population equilibrium, when the number of deaths in a population equals the number of births. The effect of carrying capacity on population dynamics is modelled with a logistic function. Carrying capacity is applied to the maximum population an environment can support in ecology, agriculture and fisheries. The term carrying capacity has been applied to a few different processes in the past before finally being applied to population limits in the 1950s. The notion of carrying capacity for humans is covered by the notion of sustainable population.

Population dynamics is the type of mathematics used to model and study the size and age composition of populations as dynamical systems.

Total fertility rate More the fertility rate, less developed that country is

The total fertility rate (TFR) of a population is the average number of children that would be born to a woman over her lifetime if:

  1. she was to experience the exact current age-specific fertility rates (ASFRs) through her lifetime
  2. she was to live from birth until the end of her reproductive life.
Biological dispersal

Biological dispersal refers to both the movement of individuals from their birth site to their breeding site, as well as the movement from one breeding site to another . Dispersal is also used to describe the movement of propagules such as seeds and spores. Technically, dispersal is defined as any movement that has the potential to lead to gene flow. The act of dispersal involves three phases: departure, transfer, settlement and there are different fitness costs and benefits associated with each of these phases. Through simply moving from one habitat patch to another, the dispersal of an individual has consequences not only for individual fitness, but also for population dynamics, population genetics, and species distribution. Understanding dispersal and the consequences both for evolutionary strategies at a species level, and for processes at an ecosystem level, requires understanding on the type of dispersal, the dispersal range of a given species, and the dispersal mechanisms involved.

Population ecology Study of the dynamics of species populations and how these populations interact with the environment

Population ecology is a sub-field of ecology that deals with the dynamics of species populations and how these populations interact with the environment, such as birth and death rates, and by immigration and emigration.

Parasite load Number and virulence of the parasites that a host organism harbours

Parasite load is a measure of the number and virulence of the parasites that a host organism harbours. Quantitative parasitology deals with measures to quantify parasite loads in samples of hosts and to make statistical comparisons of parasitism across host samples.

Population momentum is a consequence of the demographic transition. Population momentum explains why a population will continue to grow even if the fertility rate declines. Population momentum occurs because it is not only the number of children per woman that determine population growth, but also the number of women in reproductive age. Eventually, when the fertility rate reaches the replacement rate and the population size of women in the reproductive age bracket stabilizes, the population achieves equilibrium and population momentum comes to an end. Population momentum is defined as the ratio of the size of the population at that new equilibrium level to the size of the initial population. Population momentum usually occurs in populations that are growing.

Intraspecific competition

Intraspecific competition is an interaction in population ecology, whereby members of the same species compete for limited resources. This leads to a reduction in fitness for both individuals, but the more fit individual survives and is able to reproduce. By contrast, interspecific competition occurs when members of different species compete for a shared resource. Members of the same species have rather similar requirements for resources, whereas different species have a smaller contested resource overlap, resulting in intraspecific competition generally being a stronger force than interspecific competition.

Philopatry is the tendency of an organism to stay in or habitually return to a particular area. The causes of philopatry are numerous, but natal philopatry, where animals return to their birthplace to breed, may be the most common. The term derives from the Greek roots philo, "liking, loving" and patra, "fatherland", although in recent years the term has been applied to more than just the animal's birthplace. Recent usage refers to animals returning to the same area to breed despite not being born there, and migratory species that demonstrate site fidelity: reusing stopovers, staging points, and wintering grounds.

Life history theory is an analytical framework designed to study the diversity of life history strategies used by different organisms throughout the world, as well as the causes and results of the variation in their life cycles. It is a theory of biological evolution that seeks to explain aspects of organisms' anatomy and behavior by reference to the way that their life histories—including their reproductive development and behaviors, post-reproductive behaviors, and lifespan —have been shaped by natural selection. A life history strategy is the "age- and stage-specific patterns" and timing of events that make up an organism's life, such as birth, weaning, maturation, death, etc. These events, notably juvenile development, age of sexual maturity, first reproduction, number of offspring and level of parental investment, senescence and death, depend on the physical and ecological environment of the organism.

Cannibalism Consuming another individual of the same species as food

Cannibalism is the act of consuming another individual of the same species as food. Cannibalism is a common ecological interaction in the animal kingdom and has been recorded in more than 1,500 species. Human cannibalism is well documented, both in ancient and in recent times.

In population biology and demography, generation time is the average time between two consecutive generations in the lineages of a population. In human populations, generation time typically ranges from 22 to 33 years. Historians sometimes use this to date events, by converting generations into years to obtain rough estimates of time.

Demographic analysis includes the things that allow us to measure the dimensions and dynamics of populations. These methods have primarily been developed to study human populations, but are extended to a variety of areas where researchers want to know how populations of social actors can change across time through processes of birth, death, and migration. In the context of human biological populations, demographic analysis uses administrative records to develop an independent estimate of the population. Demographic analysis estimates are often considered a reliable standard for judging the accuracy of the census information gathered at any time. In the labor force, demographic analysis is used to estimate sizes and flows of populations of workers; in population ecology the focus is on the birth, death, migration and immigration of individuals in a population of living organisms, alternatively, in social human sciences could involve movement of firms and institutional forms. Demographic analysis is used in a wide variety of contexts. For example, it is often used in business plans, to describe the population connected to the geographic location of the business. Demographic analysis is usually abbreviated as DA. For the 2010 U.S. Census, The U.S. Census Bureau has expanded its DA categories. Also as part of the 2010 U.S. Census, DA now also includes comparative analysis between independent housing estimates, and census address lists at different key time points.

Survivorship curve

A survivorship curve is a graph showing the number or proportion of individuals surviving to each age for a given species or group. Survivorship curves can be constructed for a given cohort based on a life table.

Fertility factors are determinants of the number of children that an individual is likely to have. Fertility factors are mostly positive or negative correlations without certain causations.

Inbreeding avoidance, or the inbreeding avoidance hypothesis, is a concept in evolutionary biology that refers to the prevention of the deleterious effects of inbreeding. The inbreeding avoidance hypothesis posits that certain mechanisms develop within a species, or within a given population of a species, as a result of assortative mating, natural and sexual selection in order to prevent breeding among related individuals in that species or population. Although inbreeding may impose certain evolutionary costs, inbreeding avoidance, which limits the number of potential mates for a given individual, can inflict opportunity costs. Therefore, a balance exists between inbreeding and inbreeding avoidance. This balance determines whether inbreeding mechanisms develop and the specific nature of said mechanisms.

Human reproductive ecology is a subfield in evolutionary biology that is concerned with human reproductive processes and responses to ecological variables. It is based in the natural and social sciences, and is based on theory and models deriving from human and animal biology, evolutionary theory, and ecology. It is associated with fields such as evolutionary anthropology and seeks to explain human reproductive variation and adaptations. The theoretical orientation of reproductive ecology applies the theory of natural selection to reproductive behaviors, and has also been referred to as the evolutionary ecology of human reproduction.

References