Neutron-acceptance diagram shading (NADS) is a beam simulation technique. Unlike Monte-Carlo simulation codes like McStas, NADS does not trace individual neutrons but traces linearly-related bunches in a reduced-dimensionality phase space. Bunches are subdivided where necessary to follow accurately a simplified surface reflectivity model. This makes jnads results equivalent to Monte-Carlo simulations but about 5 orders of magnitude faster for difficult modelling tasks.
The raw speed of NADS makes it a particularly attractive tool for beam modelling where evolutionary algorithms are used. Tests on the C++ prototype engine could calculate the on-sample flux of a SANS instrument in 55 milliseconds on a single 2 GHz intel core 2 core. The java release (jnads) performs the same calculation in 0.8 seconds on the same hardware. A Monte-Carlo simulation of the same instrument would take 25 hours to complete with 1% statistical errors.
Performing the same, unoptimised SANS simulation with full beam monitors in jnads (i.e. not just calculating the on-sample flux) takes about 45 seconds on the same hardware and gives you an idea of the beam divergence and homogeneity at the same time.
NADS results are generally in excellent agreement with Monte-Carlo calculations. In strictly controlled tests, NADS and Monte-Carlo both produced identical results when simulating a SANS instrument. To date, no discrepancy has been found.
NADS provides the neutron flux. To calculate the neutron beam current NADS result must be multiplied by the wavelength band width.
NADS was born out of necessity. If simulating an instrument takes more than one CPU-day, then performing a full optimisation of a neutron guide hall requires more than two CPU-decades. NADS was designed with the goal of reducing the CPU time to less than one minute for all instrument geometries, making an optimisation of a neutron guide hall feasible within a week on a single desktop computer.
The name NADS arose partly due to referee comments on the original article (ADS is already used widely in Astronomy, the authors should use a different acronym), and partly due to tongue-in-cheek discussions over coffee.
NADS was used with particle-swarm optimisation to design a guide system for the ILL. The new guide system will feed two neutron spin echo instruments, a SANS instrument, a new three-axis spectrometer, a new reflectometer and fundamental physics beamlines at the ILL.
Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be deterministic in principle. The name comes from the Monte Carlo Casino in Monaco, where the primary developer of the method, physicist Stanislaw Ulam, was inspired by his uncle's gambling habits.
Small-angle neutron scattering (SANS) is an experimental technique that uses elastic neutron scattering at small scattering angles to investigate the structure of various substances at a mesoscopic scale of about 1–100 nm.
In finance, the binomial options pricing model (BOPM) provides a generalizable numerical method for the valuation of options. Essentially, the model uses a "discrete-time" model of the varying price over time of the underlying financial instrument, addressing cases where the closed-form Black–Scholes formula is wanting.
Neutron transport is the study of the motions and interactions of neutrons with materials. Nuclear scientists and engineers often need to know where neutrons are in an apparatus, in what direction they are going, and how quickly they are moving. It is commonly used to determine the behavior of nuclear reactor cores and experimental or industrial neutron beams. Neutron transport is a type of radiative transport.
Biological small-angle scattering is a small-angle scattering method for structure analysis of biological materials. Small-angle scattering is used to study the structure of a variety of objects such as solutions of biological macromolecules, nanocomposites, alloys, and synthetic polymers. Small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) are the two complementary techniques known jointly as small-angle scattering (SAS). SAS is an analogous method to X-ray and neutron diffraction, wide angle X-ray scattering, as well as to static light scattering. In contrast to other X-ray and neutron scattering methods, SAS yields information on the sizes and shapes of both crystalline and non-crystalline particles. When used to study biological materials, which are very often in aqueous solution, the scattering pattern is orientation averaged.
Lattice QCD is a well-established non-perturbative approach to solving the quantum chromodynamics (QCD) theory of quarks and gluons. It is a lattice gauge theory formulated on a grid or lattice of points in space and time. When the size of the lattice is taken infinitely large and its sites infinitesimally close to each other, the continuum QCD is recovered.
Monte Carlo methods are used in corporate finance and mathematical finance to value and analyze (complex) instruments, portfolios and investments by simulating the various sources of uncertainty affecting their value, and then determining the distribution of their value over the range of resultant outcomes. This is usually done by help of stochastic asset models. The advantage of Monte Carlo methods over other techniques increases as the dimensions of the problem increase.
A physics engine is computer software that provides an approximate simulation of certain physical systems, such as rigid body dynamics, soft body dynamics, and fluid dynamics, of use in the domains of computer graphics, video games and film (CGI). Their main uses are in video games, in which case the simulations are in real-time. The term is sometimes used more generally to describe any software system for simulating physical phenomena, such as high-performance scientific simulation.
In mathematical finance, a Monte Carlo option model uses Monte Carlo methods to calculate the value of an option with multiple sources of uncertainty or with complicated features. The first application to option pricing was by Phelim Boyle in 1977. In 1996, M. Broadie and P. Glasserman showed how to price Asian options by Monte Carlo. An important development was the introduction in 1996 by Carriere of Monte Carlo methods for options with early exercise features.
Ion beam analysis (IBA) is an important family of modern analytical techniques involving the use of MeV ion beams to probe the composition and obtain elemental depth profiles in the near-surface layer of solids. All IBA methods are highly sensitive and allow the detection of elements in the sub-monolayer range. The depth resolution is typically in the range of a few nanometers to a few ten nanometers. Atomic depth resolution can be achieved, but requires special equipment. The analyzed depth ranges from a few ten nanometers to a few ten micrometers. IBA methods are always quantitative with an accuracy of a few percent. Channeling allows to determine the depth profile of damage in single crystals.
Monte Carlo N-Particle Transport (MCNP) is a general-purpose, continuous-energy, generalized-geometry, time-dependent, Monte Carlo radiation transport code designed to track many particle types over broad ranges of energies and is developed by Los Alamos National Laboratory. Specific areas of application include, but are not limited to, radiation protection and dosimetry, radiation shielding, radiography, medical physics, nuclear criticality safety, detector design and analysis, nuclear oil well logging, accelerator target design, fission and fusion reactor design, decontamination and decommissioning. The code treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and fourth-degree elliptical tori.
Event generators are software libraries that generate simulated high-energy particle physics events. They randomly generate events as those produced in particle accelerators, collider experiments or the early universe. Events come in different types called processes as discussed in the Automatic calculation of particle interaction or decay article.
The EGS computer code system is a general purpose package for the Monte Carlo simulation of the coupled transport of electrons and photons in an arbitrary geometry for particles with energies from a few keV up to several hundreds of GeV. It originated at SLAC but National Research Council of Canada and KEK have been involved in its development since the early 80s.
The kinetic Monte Carlo (KMC) method is a Monte Carlo method computer simulation intended to simulate the time evolution of some processes occurring in nature. Typically these are processes that occur with known transition rates among states. It is important to understand that these rates are inputs to the KMC algorithm, the method itself cannot predict them.
The Monte Carlo trolley, or FERMIAC, was an analog computer invented by physicist Enrico Fermi to aid in his studies of neutron transport.
Auxiliary-field Monte Carlo is a method that allows the calculation, by use of Monte Carlo techniques, of averages of operators in many-body quantum mechanical or classical problems.
Spinhenge@home was a volunteer computing project on the BOINC platform, which performs extensive numerical simulations concerning the physical characteristics of magnetic molecules. It is a project of the Bielefeld University of Applied Sciences, Department of Electrical Engineering and Computer Science, in cooperation with the University of Osnabrück and Ames Laboratory.
In physics, ray tracing is a method for calculating the path of waves or particles through a system with regions of varying propagation velocity, absorption characteristics, and reflecting surfaces. Under these circumstances, wavefronts may bend, change direction, or reflect off surfaces, complicating analysis. Strictly speaking Ray tracing is when analytic solutions to the ray's trajectories are solved; however Ray tracing is often confused with ray-marching which numerically solves problems by repeatedly advancing idealized narrow beams called rays through the medium by discrete amounts. Simple problems can be analyzed by propagating a few rays using simple mathematics. More detailed analysis can be performed by using a computer to propagate many rays.
McStas is free and open-source software simulator for neutron scattering experiments. McStas is an abbreviation for Monte carlo Simulation of triple axis spectrometers, but the software can be used to simulate all types of neutron scattering instruments. The software is based on both Monte Carlo methods and ray tracing. A special compiler translates a domain-specific language describing the neutron instrument geometry and component definitions to a stand-alone C code.
The Virtual Instrumentation Tool for the ESS (VITESS) is an open source software package for the simulation of neutron scattering experiments. The software is maintained and developed by the Forschungszentrum Jülich (FZJ), and available for Windows, Linux and Macintosh on the VITESS homepage. It is widely used for simulation of existing neutron scattering instruments as well as for the development of new instruments.