Noether inequality

Last updated

In mathematics, the Noether inequality, named after Max Noether, is a property of compact minimal complex surfaces that restricts the topological type of the underlying topological 4-manifold. It holds more generally for minimal projective surfaces of general type over an algebraically closed field.

Contents

Formulation of the inequality

Let X be a smooth minimal projective surface of general type defined over an algebraically closed field (or a smooth minimal compact complex surface of general type) with canonical divisor K = −c1(X), and let pg = h0(K) be the dimension of the space of holomorphic two forms, then

For complex surfaces, an alternative formulation expresses this inequality in terms of topological invariants of the underlying real oriented four manifold. Since a surface of general type is a Kähler surface, the dimension of the maximal positive subspace in intersection form on the second cohomology is given by b+ = 1 + 2pg. Moreover, by the Hirzebruch signature theorem c12 (X) = 2e + 3σ, where e = c2(X) is the topological Euler characteristic and σ = b+  b is the signature of the intersection form. Therefore, the Noether inequality can also be expressed as

or equivalently using e = 2 – 2 b1 + b+ + b

Combining the Noether inequality with the Noether formula 12χ=c12+c2 gives

where q is the irregularity of a surface, which leads to a slightly weaker inequality, which is also often called the Noether inequality:

Surfaces where equality holds (i.e. on the Noether line) are called Horikawa surfaces.

Proof sketch

It follows from the minimal general type condition that K2 > 0. We may thus assume that pg > 1, since the inequality is otherwise automatic. In particular, we may assume there is an effective divisor D representing K. We then have an exact sequence

so

Assume that D is smooth. By the adjunction formula D has a canonical linebundle , therefore is a special divisor and the Clifford inequality applies, which gives

In general, essentially the same argument applies using a more general version of the Clifford inequality for local complete intersections with a dualising line bundle and 1-dimensional sections in the trivial line bundle. These conditions are satisfied for the curve D by the adjunction formula and the fact that D is numerically connected.

Related Research Articles

In mathematics, an infinite series of numbers is said to converge absolutely if the sum of the absolute values of the summands is finite. More precisely, a real or complex series is said to converge absolutely if for some real number . Similarly, an improper integral of a function, , is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if

In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the convergence of monotonic sequences that are also bounded. Informally, the theorems state that if a sequence is increasing and bounded above by a supremum, then the sequence will converge to the supremum; in the same way, if a sequence is decreasing and is bounded below by an infimum, it will converge to the infimum.

In probability theory, Chebyshev's inequality guarantees that, for a wide class of probability distributions, no more than a certain fraction of values can be more than a certain distance from the mean. Specifically, no more than 1/k2 of the distribution's values can be k or more standard deviations away from the mean. The rule is often called Chebyshev's theorem, about the range of standard deviations around the mean, in statistics. The inequality has great utility because it can be applied to any probability distribution in which the mean and variance are defined. For example, it can be used to prove the weak law of large numbers.

In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces.

The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It relates the complex analysis of a connected compact Riemann surface with the surface's purely topological genus g, in a way that can be carried over into purely algebraic settings.

In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou.

In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since found applications in physics, Calabi–Yau manifolds, string theory, Chern–Simons theory, knot theory, Gromov–Witten invariants, topological quantum field theory, the Chern theorem etc.

Virasoro algebra

In mathematics, the Virasoro algebra is a complex Lie algebra, the unique central extension of the Witt algebra. It is widely used in two-dimensional conformal field theory and in string theory.

Divisor function Arithmetic function related to the divisors of an integer

In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer. It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.

K3 surface A type of smooth complex surface of kodaira dimension 0

In mathematics, a complex analytic K3 surface is a compact connected complex manifold of dimension 2 with trivial canonical bundle and irregularity zero. An (algebraic) K3 surface over any field means a smooth proper geometrically connected algebraic surface that satisfies the same conditions. In the Enriques–Kodaira classification of surfaces, K3 surfaces form one of the four classes of minimal surfaces of Kodaira dimension zero. A simple example is the Fermat quartic surface

In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two and so of dimension four as a smooth manifold.

In contexts including complex manifolds and algebraic geometry, a logarithmic differential form is a meromorphic differential form with poles of a certain kind. The concept was introduced by Deligne.

Linear system of divisors

In algebraic geometry, a linear system of divisors is an algebraic generalization of the geometric notion of a family of curves; the dimension of the linear system corresponds to the number of parameters of the family.

In mathematics, the Hirzebruch–Riemann–Roch theorem, named after Friedrich Hirzebruch, Bernhard Riemann, and Gustav Roch, is Hirzebruch's 1954 result generalizing the classical Riemann–Roch theorem on Riemann surfaces to all complex algebraic varieties of higher dimensions. The result paved the way for the Grothendieck–Hirzebruch–Riemann–Roch theorem proved about three years later.

In mathematics, the Riemann–Roch theorem for surfaces describes the dimension of linear systems on an algebraic surface. The classical form of it was first given by Castelnuovo, after preliminary versions of it were found by Noether (1886) and Enriques (1894). The sheaf-theoretic version is due to Hirzebruch.

In mathematics, Doob's martingale inequality, also known as Kolmogorov’s submartingale inequality is a result in the study of stochastic processes. It gives a bound on the probability that a stochastic process exceeds any given value over a given interval of time. As the name suggests, the result is usually given in the case that the process is a martingale, but the result is also valid for submartingales.

Discrete Morse theory is a combinatorial adaptation of Morse theory developed by Robin Forman. The theory has various practical applications in diverse fields of applied mathematics and computer science, such as configuration spaces, homology computation, denoising, mesh compression, and topological data analysis.

In quantum information theory, strong subadditivity of quantum entropy (SSA) is the relation among the von Neumann entropies of various quantum subsystems of a larger quantum system consisting of three subsystems. It is a basic theorem in modern quantum information theory. It was conjectured by D. W. Robinson and D. Ruelle in 1966 and O. E. Lanford III and D. W. Robinson in 1968 and proved in 1973 by E.H. Lieb and M.B. Ruskai. In 2010 Ruskai found out that J. Kiefer had proved it back in 1959.

In additive number theory, an area of mathematics, the Erdős–Tetali theorem is an existence theorem concerning economical additive bases of every order. More specifically, it states that for every fixed integer , there exists a subset of the natural numbers satisfying

In mathematics, and especially differential and algebraic geometry, K-stability is an algebro-geometric stability condition, for complex manifolds and complex algebraic varieties. The notion of K-stability was first introduced by Gang Tian and reformulated more algebraically later by Simon Donaldson. The definition was inspired by a comparison to geometric invariant theory (GIT) stability. In the special case of Fano varieties, K-stability precisely characterises the existence of Kähler–Einstein metrics. More generally, on any compact complex manifold, K-stability is conjectured to be equivalent to the existence of constant scalar curvature Kähler metrics.

References