Numerov's method

Last updated

Numerov's method (also called Cowell's method) is a numerical method to solve ordinary differential equations of second order in which the first-order term does not appear. It is a fourth-order linear multistep method. The method is implicit, but can be made explicit if the differential equation is linear.

Contents

Numerov's method was developed by the Russian astronomer Boris Vasil'evich Numerov.

The method

The Numerov method can be used to solve differential equations of the form

In it, three values of taken at three equidistant points are related as follows:

where , , , and .

Nonlinear equations

For nonlinear equations of the form

the method gives

This is an implicit linear multistep method, which reduces to the explicit method given above if is linear in by setting . It achieves order-4 accuracy ( Hairer, Nørsett & Wanner 1993 , §III.10).

Application

In numerical physics the method is used to find solutions of the unidimensional Schrödinger equation for arbitrary potentials. An example of which is solving the radial equation for a spherically symmetric potential. In this example, after separating the variables and analytically solving the angular equation, we are left with the following equation of the radial function :

This equation can be reduced to the form necessary for the application of Numerov's method with the following substitution:

And when we make the substitution, the radial equation becomes

or

which is equivalent to the one-dimensional Schrödinger equation, but with the modified effective potential

This equation we can proceed to solve the same way we would have solved the one-dimensional Schrödinger equation. We can rewrite the equation a little bit differently and thus see the possible application of Numerov's method more clearly:

Derivation

We are given the differential equation

To derive the Numerov's method for solving this equation, we begin with the Taylor expansion of the function we want to solve, , around the point :

Denoting the distance from to by , we can write the above equation as

If we evenly discretize the space, we get a grid of points, where . By applying the above equations to this discrete space, we get a relation between the and :

Computationally, this amounts to taking a step forward by an amount . If we want to take a step backwards, we replace every with and get the expression for :

Note that only the odd powers of experienced a sign change. By summing the two equations, we derive that

We can solve this equation for by substituting the expression given at the beginning, that is . To get an expression for the factor, we simply have to differentiate twice and approximate it again in the same way we did this above:

If we now substitute this to the preceding equation, we get

or

This yields the Numerov's method if we ignore the term of order . It follows that the order of convergence (assuming stability) is 4.

Related Research Articles

In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy and potential energy. Its spectrum, the system's energy spectrum or its set of energy eigenvalues, is the set of possible outcomes obtainable from a measurement of the system's total energy. Due to its close relation to the energy spectrum and time-evolution of a system, it is of fundamental importance in most formulations of quantum theory.

Schrödinger equation Linear partial differential equation whose solution describes the quantum-mechanical system.

The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of the subject. The equation is named after Erwin Schrödinger, who postulated the equation in 1925, and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.

In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equality constraints. It is named after the mathematician Joseph-Louis Lagrange. The basic idea is to convert a constrained problem into a form such that the derivative test of an unconstrained problem can still be applied. The relationship between the gradient of the function and gradients of the constraints rather naturally leads to a reformulation of the original problem, known as the Lagrangian function.

Spectral methods are a class of techniques used in applied mathematics and scientific computing to numerically solve certain differential equations, potentially involving the use of the fast Fourier transform. The idea is to write the solution of the differential equation as a sum of certain "basis functions" and then to choose the coefficients in the sum in order to satisfy the differential equation as well as possible.

Numerical methods for ordinary differential equations Methods used to find numerical solutions of ordinary differential equations

Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals.

In quantum mechanics, perturbation theory is a set of approximation schemes directly related to mathematical perturbation for describing a complicated quantum system in terms of a simpler one. The idea is to start with a simple system for which a mathematical solution is known, and add an additional "perturbing" Hamiltonian representing a weak disturbance to the system. If the disturbance is not too large, the various physical quantities associated with the perturbed system can be expressed as "corrections" to those of the simple system. These corrections, being small compared to the size of the quantities themselves, can be calculated using approximate methods such as asymptotic series. The complicated system can therefore be studied based on knowledge of the simpler one. In effect, it is describing a complicated unsolved system using a simple, solvable system.

Path integral formulation Formulation of quantum mechanics

The path integral formulation is a description in quantum mechanics that generalizes the action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.

An important problem in quantum mechanics is that of a particle in a spherically symmetric potential, i.e., a potential that depends only on the distance between the particle and a defined center point. In particular, if the particle in question is an electron and the potential is derived from Coulomb's law, then the problem can be used to describe a hydrogen-like (one-electron) atom.

Fine structure Details in the emission spectrum of an atom

In atomic physics, the fine structure describes the splitting of the spectral lines of atoms due to electron spin and relativistic corrections to the non-relativistic Schrödinger equation. It was first measured precisely for the hydrogen atom by Albert A. Michelson and Edward W. Morley in 1887, laying the basis for the theoretical treatment by Arnold Sommerfeld, introducing the fine-structure constant.

Canonical quantization Process of converting a classical physical theory into one compatible with quantum mechanics

In physics, canonical quantization is a procedure for quantizing a classical theory, while attempting to preserve the formal structure, such as symmetries, of the classical theory, to the greatest extent possible.

In theoretical physics, supersymmetric quantum mechanics is an area of research where supersymmetry are applied to the simpler setting of plain quantum mechanics, rather than quantum field theory. Supersymmetric quantum mechanics has found applications outside of high-energy physics, such as providing new methods to solve quantum mechanical problems, providing useful extensions to the WKB approximation, and statistical mechanics.

The finite potential well is a concept from quantum mechanics. It is an extension of the infinite potential well, in which a particle is confined to a "box", but one which has finite potential "walls". Unlike the infinite potential well, there is a probability associated with the particle being found outside the box. The quantum mechanical interpretation is unlike the classical interpretation, where if the total energy of the particle is less than the potential energy barrier of the walls it cannot be found outside the box. In the quantum interpretation, there is a non-zero probability of the particle being outside the box even when the energy of the particle is less than the potential energy barrier of the walls.

Finite difference method

In numerical analysis, finite-difference methods (FDM) are a class of numerical techniques for solving differential equations by approximating derivatives with finite differences. Both the spatial domain and time interval are discretized, or broken into a finite number of steps, and the value of the solution at these discrete points is approximated by solving algebraic equations containing finite differences and values from nearby points.

The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.

The Gross–Pitaevskii equation describes the ground state of a quantum system of identical bosons using the Hartree–Fock approximation and the pseudopotential interaction model.

The Gamow factor or Gamow–Sommerfeld factor, named after its discoverer George Gamow, is a probability factor for two nuclear particles' chance of overcoming the Coulomb barrier in order to undergo nuclear reactions, for example in nuclear fusion. By classical physics, there is almost no possibility for protons to fuse by crossing each other's Coulomb barrier at temperatures commonly observed to cause fusion, such as those found in the sun. When George Gamow instead applied quantum mechanics to the problem, he found that there was a significant chance for the fusion due to tunneling.

In solid-state physics, the k·p perturbation theory is an approximated semi-empirical approach for calculating the band structure and optical properties of crystalline solids. It is pronounced "k dot p", and is also called the "k·p method". This theory has been applied specifically in the framework of the Luttinger–Kohn model, and of the Kane model.

An electric dipole transition is the dominant effect of an interaction of an electron in an atom with the electromagnetic field.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

The Peierls substitution method, named after the original work by Rudolf Peierls is a widely employed approximation for describing tightly-bound electrons in the presence of a slowly varying magnetic vector potential.

References