Object-based spatial database

Last updated

An object-based spatial database is a spatial database that stores the location as objects. The object-based spatial model treats the world as surface littered with recognizable objects (e.g. cities, rivers), which exist independent of their locations.

Contents

Objects can be simple as polygons and lines, or be more complex to represent cities.

While a field-based data model sees the world as a continuous surface over which features (e.g. elevation) vary, using an object-based spatial database, it is easier to store additional attributes with the objects, such as direction, speed, etc. Using these attributes can make it easier to answer queries like "find all tanks whose speed is 10 km and oriented to north". Or "find all enemy tanks in a certain region".

Storing attributes with objects can provide better result presentation and improved manipulation capabilities in a more efficient way. In a field-based data model, this information is usually stored at different layers and it is harder to extract different information from various layers. This data model can be applied above the ER as in GERM model and GISER.

S.Shekhar introduces direction as a spatial object and presents a solution to object-direction-based queries.

Data model representation

The most common representations for the data model follow.

PostGIS

An open-source software program that adds support for geographic objects to the PostgreSQL object–relational database. PostGIS follows the Simple Features for SQL specification from the Open Geospatial Consortium.

OMT-G

Provides a UML representation for geographic applications, it can represent the concept of field, object and provides a way to differentiate between spatial relation and simple association.

Entity–Relationship

GraphDB

Represents a framework of objects as classes that are partitioned into three kinds of classes: simple classes, link classes, and path classes. Objects of a simple class are on the one hand just like objects in other models. They have an object type and an object identity and can have attributes whose values are either of a data type (e.g. integer, string) or of an object type (that is, an attribute may contain a reference to another object). So the structure of an object is basically that of a tuple or record. On the other hand, objects of a simple class are nodes of the database graph – the whole database can also be viewed as a single graph. Objects of a link class are like objects of a simple class but additionally contain two distinguished references to source and target objects (belonging to simple classes), which makes them edges of the database graph. Finally, an object of a path class is like an object of a simple class, but contains additionally a list of references to node and edge objects which form a path over the database graph.

GEIS

Represent a data model to store geographic information on top of EER model, GEIS define the input data model and provide the following for data model Geometry. In the GISER model, geometry is an entity that is related to a spatial object by the relationship determines shape of. Additional entities represent the primitives such as points, lines, and polygons as proposed in related models. Topology. Topology is a property belonging to a spatial object and that property remains unaltered even when the object deforms. An example is a road network. The two nodes in the network thus remain connected even if the path between the nodes is changed by road construction. In order to represent the topology, the basic primitives such as networks (i.e., graphs) and partitions are provided. Additional primitives can be added on lines of the Worboy model, This system support representation for stored data.

GeoOOA

Oracle spatial

Oracle spatial is a component of enterprise Oracle 10g and provides support to stores object such as road on top of the current implentend construction but it used network data model to store geographic data as nodes and links (a graph representation) with each node or links it has a set of attributes. For example, a route object can be added to the database.

GRASS GIS

It supports raster and some set of vector representation.

See also

Related Research Articles

<span class="mw-page-title-main">Database</span> Organized collection of data in computing

In computing, a database is an organized collection of data stored and accessed electronically through the use of a database management system. Small databases can be stored on a file system, while large databases are hosted on computer clusters or cloud storage. The design of databases spans formal techniques and practical considerations, including data modeling, efficient data representation and storage, query languages, security and privacy of sensitive data, and distributed computing issues, including supporting concurrent access and fault tolerance.

<span class="mw-page-title-main">Data model</span> Model that organizes elements of data and how they relate to one another and to real-world entities.

A data model is an abstract model that organizes elements of data and standardizes how they relate to one another and to the properties of real-world entities. For instance, a data model may specify that the data element representing a car be composed of a number of other elements which, in turn, represent the color and size of the car and define its owner.

<span class="mw-page-title-main">Scene graph</span>

A scene graph is a general data structure commonly used by vector-based graphics editing applications and modern computer games, which arranges the logical and often spatial representation of a graphical scene. It is a collection of nodes in a graph or tree structure. A tree node may have many children but only a single parent, with the effect of a parent applied to all its child nodes; an operation performed on a group automatically propagates its effect to all of its members. In many programs, associating a geometrical transformation matrix at each group level and concatenating such matrices together is an efficient and natural way to process such operations. A common feature, for instance, is the ability to group related shapes and objects into a compound object that can then be manipulated as easily as a single object.

A GIS file format is a standard for encoding geographical information into a computer file, as a specialized type of file format for use in geographic information systems (GIS) and other geospatial applications. Since the 1970s, dozens of formats have been created based on various data models for various purposes. They have been created by government mapping agencies, GIS software vendors, standards bodies such as the Open Geospatial Consortium, informal user communities, and even individual developers.

<span class="mw-page-title-main">Solid modeling</span> Set of principles for modeling solid geometry

Solid modeling is a consistent set of principles for mathematical and computer modeling of three-dimensional shapes (solids). Solid modeling is distinguished within the broader related areas of geometric modeling and computer graphics, such as 3D modeling, by its emphasis on physical fidelity. Together, the principles of geometric and solid modeling form the foundation of 3D-computer-aided design and in general support the creation, exchange, visualization, animation, interrogation, and annotation of digital models of physical objects.

<span class="mw-page-title-main">R-tree</span> Data structures used in spatial indexing

R-trees are tree data structures used for spatial access methods, i.e., for indexing multi-dimensional information such as geographical coordinates, rectangles or polygons. The R-tree was proposed by Antonin Guttman in 1984 and has found significant use in both theoretical and applied contexts. A common real-world usage for an R-tree might be to store spatial objects such as restaurant locations or the polygons that typical maps are made of: streets, buildings, outlines of lakes, coastlines, etc. and then find answers quickly to queries such as "Find all museums within 2 km of my current location", "retrieve all road segments within 2 km of my location" or "find the nearest gas station". The R-tree can also accelerate nearest neighbor search for various distance metrics, including great-circle distance.

VMDS abbreviates the relational database technology called Version Managed Data Store provided by GE Energy as part of its Smallworld technology platform and was designed from the outset to store and analyse the highly complex spatial and topological networks typically used by enterprise utilities such as power distribution and telecommunications.

Simple Features is a set of standards that specify a common storage and access model of geographic features made of mostly two-dimensional geometries used by geographic information systems. It is formalized by both the Open Geospatial Consortium (OGC) and the International Organization for Standardization (ISO).

A spatial database is a general-purpose database that has been enhanced to include spatial data that represents objects defined in a geometric space, along with tools for querying and analyzing such data. Most spatial databases allow the representation of simple geometric objects such as points, lines and polygons. Some spatial databases handle more complex structures such as 3D objects, topological coverages, linear networks, and triangulated irregular networks (TINs). While typical databases have developed to manage various numeric and character types of data, such databases require additional functionality to process spatial data types efficiently, and developers have often added geometry or feature data types. The Open Geospatial Consortium (OGC) developed the Simple Features specification and sets standards for adding spatial functionality to database systems. The SQL/MM Spatial ISO/IEC standard is a part of the SQL/MM multimedia standard and extends the Simple Features standard with data types that support circular interpolations. Almost all current relational and object-relational database management systems now have spatial extensions, and some GIS software vendors have developed their own spatial extensions to database management systems.

<span class="mw-page-title-main">RDFLib</span> Python library to serialize, parse and process RDF data

RDFLib is a Python library for working with RDF, a simple yet powerful language for representing information. This library contains parsers/serializers for almost all of the known RDF serializations, such as RDF/XML, Turtle, N-Triples, & JSON-LD, many of which are now supported in their updated form. The library also contains both in-memory and persistent Graph back-ends for storing RDF information and numerous convenience functions for declaring graph namespaces, lodging SPARQL queries and so on. It is in continuous development with the most recent stable release, rdflib 6.1.1 having been released on 20 December 2021. It was originally created by Daniel Krech with the first release in November, 2002.

Oracle Spatial and Graph, formerly Oracle Spatial, is a free option component of the Oracle Database. The spatial features in Oracle Spatial and Graph aid users in managing geographic and location-data in a native type within an Oracle database, potentially supporting a wide range of applications — from automated mapping, facilities management, and geographic information systems (AM/FM/GIS), to wireless location services and location-enabled e-business. The graph features in Oracle Spatial and Graph include Oracle Network Data Model (NDM) graphs used in traditional network applications in major transportation, telcos, utilities and energy organizations and RDF semantic graphs used in social networks and social interactions and in linking disparate data sets to address requirements from the research, health sciences, finance, media and intelligence communities.

<span class="mw-page-title-main">Database model</span> Type of data model

A database model is a type of data model that determines the logical structure of a database. It fundamentally determines in which manner data can be stored, organized and manipulated. The most popular example of a database model is the relational model, which uses a table-based format.

A document-oriented database, or document store, is a computer program and data storage system designed for storing, retrieving and managing document-oriented information, also known as semi-structured data.

A triplestore or RDF store is a purpose-built database for the storage and retrieval of triples through semantic queries. A triple is a data entity composed of subject–predicate–object, like "Bob is 35" or "Bob knows Fred".

A graph database (GDB) is a database that uses graph structures for semantic queries with nodes, edges, and properties to represent and store data. A key concept of the system is the graph. The graph relates the data items in the store to a collection of nodes and edges, the edges representing the relationships between the nodes. The relationships allow data in the store to be linked together directly and, in many cases, retrieved with one operation. Graph databases hold the relationships between data as a priority. Querying relationships is fast because they are perpetually stored in the database. Relationships can be intuitively visualized using graph databases, making them useful for heavily inter-connected data.

<span class="mw-page-title-main">Geospatial topology</span> Type of spatial relationship

Geospatial topology is the study and application of qualitative spatial relationships between geographic features, or between representations of such features in geographic information, such as in geographic information systems (GIS). For example, the fact that two regions overlap or that one contains the other are examples of topological relationships. It is thus the application of the mathematics of topology to GIS, and is distinct from, but complementary to the many aspects of geographic information that are based on quantitative spatial measurements through coordinate geometry. Topology appears in many aspects of geographic information science and GIS practice, including the discovery of inherent relationships through spatial query, vector overlay and map algebra; the enforcement of expected relationships as validation rules stored in geospatial data; and the use of stored topological relationships in applications such as network analysis. Spatial topology is the generalization of geospatial topology for non-geographic domains, e.g., CAD software.

The following is provided as an overview of and topical guide to databases:

<span class="mw-page-title-main">Oracle NoSQL Database</span>

Oracle NoSQL Database is a NoSQL-type distributed key-value database from Oracle Corporation. It provides transactional semantics for data manipulation, horizontal scalability, and simple administration and monitoring.

Cypher is a declarative graph query language that allows for expressive and efficient data querying in a property graph.

GQL is a proposed standard graph query language. In September 2019 a proposal for a project to create a new standard graph query language was approved by a vote of national standards bodies which are members of ISO/IEC Joint Technical Committee 1(ISO/IEC JTC 1). JTC 1 is responsible for international Information Technology standards. GQL is intended to be a declarative database query language, like SQL.

References

Oracle spatial documentation