This article may be too technical for most readers to understand.(July 2015) |
Opitz G/BBB syndrome | |
---|---|
Other names | Hypertelorism-oesophageal abnormality-hypospadias syndrome |
Opitz G/BBB syndrome, also known as Opitz syndrome, G syndrome or BBB syndrome, is a rare genetic disorder that will affect physical structures along the midline of the body. [1] The letters G and BBB represent the last names of the families that were first diagnosed with the disorder, while Opitz is the last name of the doctor that first described the signs and symptoms of the disease. There are two different forms of Optiz G/BBB syndrome: x-linked (recessive) syndrome (Type I; XLOS; OSX) and dominant autosomal syndrome (Type II; ADOS). However, both result in common physical deformities, although their pattern of inheritance may differ. Several other names for the disease(s) are no longer used. These include hypospadias-dysphagia syndrome, Opitz-Frias syndrome, telecanthus with associated abnormalities, and hypertelorism-hypospadias syndrome. [2]
One out of every 50,000 to 100,000 males is born with X-linked type II Optiz G/BBB syndrome, but professionals believe that condition is under diagnosed and there are actually many more cases. [3] It is unknown as to how many autosomal dominant cases exist. However, the autosomal dominant cases are also categorized under a more commonly diagnosed group called 22q11.2 deletion syndrome. This group includes several other diseases that all result because of a small deletion of chromosome 22 at the q11.2 location. [4]
The three most common symptoms of Opitz G/BBB syndrome (both type I & II) are hypertelorism (exceptionally wide-spaced eyes), laryngo-tracheo-esophalgeal defects (including clefts and holes in the palate, larynx, trachea and esophagus) and hypospadias (urinary openings in males not at the tip of the penis) (Meroni, Opitz G/BBB syndrome, 2012). Abnormalities in the larynx, trachea and esophagus can cause significant difficulty breathing and/or swallowing and can result in reoccurring pneumonia and life-threatening situations. Commonly, there may be a gap between the trachea and esophagus, referred to as a laryngeal cleft; which can allow food or fluid to enter the airway and make breathing and eating a difficult task. [5]
Genital abnormalities like a urinary opening under the penis (hypospadias), undescended testes (cryptorchidism), underdeveloped scrotum and a scrotum divided into two lobes (bifid scrotum) can all be commonplace for males with the disease. [6]
Developmental delays of the brain and nervous system are also common in both types I and II of the disease. [7] 50% of people with Opitz G/BBB Syndrome will experience developmental delay and mild intellectual disability. This can impact motor skills, speech and learning capabilities. Some of these instances are likened to autistic spectrum disorders. Close to half of the people with Opitz G/BBB Syndrome also have a cleft lip (hole in the lip opening) and possibly a cleft palate (hole in the roof of the mouth), as well. Less than half of the people diagnosed have heart defects, imperforate anus (obstructed anal opening), and brain defects. [8] Of all the impairments, female carriers of X-linked Type I Opitz G/BBB Syndrome usually only have ocular hypertelorism. [9]
Opitz G/BBB Syndrome is a rare genetic condition caused by one of two major types of mutations: MID1 mutation on the short (p) arm of the X chromosome or a mutation of the 22q11.2 gene on the 22nd chromosome. [10]
Both X-linked Type I and Autosomal dominant Type II Optiz G/BBB syndromes are caused by genetic mutations. However, while the X-linked form is caused by a mutation on the midline 1 (MID1) gene on the short (p) arm of the X chromosome; the autosomal dominant form is due to a mutation on chromosome 22. Both forms of the disease result in physical deformities along the centerline of the body.[ citation needed ]
In X-linked Type I patients, the mutation in the MID1 gene leads to less functional midline-1 proteins. These proteins are responsible for binding to the cytoskeleton and assist the cell during cell division. It seems these issues with early cell division have a significant impact on the physical deformities that typically accompany the disease.
Autosomal dominant Type II patients endure a mutation on chromosome 22, most commonly at 22q11.2. Some researchers consider Opitz G/BBB syndrome to be a type of 22q11.2 deletion syndrome (a slightly different and broader disease). In some cases of autosomal dominant Opitz G/BBB syndrome, the disease is caused by a mutation in the SPECC1L gene (near the 22q11.2 gene), which helps make cytospin-A. Cytospin-A is a protein imperative to the formation of facial features and is often considered responsible for the cleft lip or palate that Opitz G/BBB syndrome patients will have. [11]
Since physical abnormalities can affect all body parts along the midline of the body, many different body systems are at risk of being damaged. Those systems commonly affected are the nervous, digestive, cardiovascular, respiratory and reproductive. [12] Typically, those diagnosed with either type of Opitz G/BBB syndrome will also have ocular hypertelorism, or eyes that are excessively spaced apart. Patients will commonly experience physical defects in the larynx, trachea and esophagus and will often cause breathing and swallowing difficulties. Further facial anomalies may occur, such as a prominent forehead, widow's peak, broad nasal bridge. Those with the disease may also experience hypospadias (urinary opening in males is not at the head of the penis) and developmental delay, as well. [13]
X-linked type I Opitz G/BBB Syndrome is diagnosed on clinical findings, but those findings can vary greatly: even within the same family. Manifestations of X-linked type I are classified in the frequent/major findings and minor findings that are found in less than 50% of individuals. [14]
The three major findings that suggest a person has X-linked Type I Opitz G/BBB Syndrome:
Minor findings found in less than 50% of individuals:
In 1989, Hogdall used ultrasonographs to diagnose X-linked Type I Opitz G/BBB Syndrome after 19 weeks of pregnancy, by identifying hypertelorism (widely-spaced eyes) and hypospadias (irregular urinary tract openings in the penis). [16]
There is also molecular genetic testing available to identify mutations leading to Opitz G/BBB Syndrome. X-linked Type I testing must be done on MID1, since this is the only gene that is known to cause Type I Opitz G/BBB Syndrome. Two different tests can be performed: sequence analysis and deletion/duplication analysis. In the sequence analysis a positive result would detect 15-50% of the DNA sequence mutated, while a deletion/duplication positive result would find deletion or duplication of one or more exons of the entire MID1 gene. [17]
In terms of prevention, several researchers strongly suggest prenatal testing for at-risk pregnancies if a MID1 mutation has been identified in a family member. Doctors can perform a fetal sex test through chromosome analysis and then screen the DNA for any mutations causing the disease. Knowing that a child may be born with Opitz G/BBB syndrome could help physicians prepare for the child's needs and the family prepare emotionally. Furthermore, genetic counseling for young adults that are affected, are carriers or are at risk of carrying is strongly suggested, as well (Meroni, Opitz G/BBB syndrome, 2012). Current research suggests that the cause is genetic and no known environmental risk factors have been documented. The only education for prevention suggested is genetic testing for at-risk young adults when a mutation is found or suspected in a family member. [18]
Because the variability of this disease is so great and the way that it reveals itself could be multi-faceted; once diagnosed, a multidisciplinary team is recommended to treat the disease and should include a craniofacial surgeon, ophthalmologist, pediatrician, pediatric urologist, cardiologist, pulmonologist, speech pathologist, and a medical geneticist. Several important steps must be followed, as well.[ citation needed ]
Many surgical repairs may be needed, as assessed by professionals. Furthermore, special education therapies and psychoemotional therapies may be required, as well. In some cases, antireflux drugs can be prescribed until risk of breathing and swallowing disorders are removed. Genetic counseling is highly advised to help explain who else in the family may be at risk for the disease and to help guide family planning decisions in the future. [19]
Because of its wide variability in which defects will occur, there is no known mortality rate specifically for the disease. However, the leading cause of death for people with Opitz G/BBB syndrome is due to infant death caused by aspiration due to esophageal, pharyngeal or laryngeal defects. [20] Fortunately, to date there are no factors that can increase the expression of symptoms of this disease. All abnormalities and symptoms are present at birth. [21]
Since the symptoms caused by this disease are present at birth, there is no “cure.” The best cure that scientists are researching is awareness and genetic testing to determine risk factors and increase knowledgeable family planning. Prevention is the only option at this point in time for a cure.
A genetic disorder is a health problem caused by one or more abnormalities in the genome. It can be caused by a mutation in a single gene (monogenic) or multiple genes (polygenic) or by a chromosomal abnormality. Although polygenic disorders are the most common, the term is mostly used when discussing disorders with a single genetic cause, either in a gene or chromosome. The mutation responsible can occur spontaneously before embryonic development, or it can be inherited from two parents who are carriers of a faulty gene or from a parent with the disorder. When the genetic disorder is inherited from one or both parents, it is also classified as a hereditary disease. Some disorders are caused by a mutation on the X chromosome and have X-linked inheritance. Very few disorders are inherited on the Y chromosome or mitochondrial DNA.
Joubert syndrome is a rare autosomal recessive genetic disorder that affects the cerebellum, an area of the brain that controls balance and coordination.
Weissenbacher–Zweymuller syndrome (WZS), also called Pierre-Robin syndrome with fetal chondrodysplasia, is an autosomal recessive congenital disorder, linked to mutations in the COL11A2 gene, which codes for the α2 strand of collagen type XI. It is a collagenopathy, types II and XI disorder. The condition was first characterized in 1964 by G. Weissenbacher and Ernst Zweymüller.
Van der Woude syndrome (VDWS) is a genetic disorder characterized by the combination of lower lip pits, cleft lip with or without cleft palate (CL/P), and cleft palate only (CPO). The frequency of orofacial clefts ranges from 1:1000 to 1:500 births worldwide, and there are more than 400 syndromes that involve CL/P. VWS is distinct from other clefting syndromes due to the combination of cleft lip and palate (CLP) and CPO within the same family. Other features frequently associated with VWS include hypodontia in 10-81% of cases, narrow arched palate, congenital heart disease, heart murmur and cerebral abnormalities, syndactyly of the hands, polythelia, ankyloglossia, and adhesions between the upper and lower gum pads.
Jackson–Weiss syndrome (JWS) is a genetic disorder characterized by foot abnormalities and the premature fusion of certain bones of the skull (craniosynostosis), which prevents further growth of the skull and affects the shape of the head and face. This genetic disorder can also sometimes cause intellectual disability and crossed eyes. It was characterized in 1976.
Abruzzo–Erickson syndrome is an extremely rare disorder characterized by deafness, protruding ears, coloboma, a cleft palate or palatal rugosity, radial synostosis, and short stature. It was first characterized by Abruzzo and Erickson in 1977 as a CHARGE like syndrome as variably expressed among a family of two brothers, their mother, and their maternal uncle. Members of this family exhibited many of the CHARGE symptoms, but notably did not have choanal atresia and the brothers experienced typical genital development. Due to the recent discovery of this disorder, its etiology is not fully known but it is understood that it arises from mutations on the TBX22 gene on the X-chromosome. The disorder is inherited in an X-linked recessive manner. There is currently no known cure but its symptoms can be treated.
Loeys–Dietz syndrome (LDS) is an autosomal dominant genetic connective tissue disorder. It has features similar to Marfan syndrome and Ehlers–Danlos syndrome. The disorder is marked by aneurysms in the aorta, often in children, and the aorta may also undergo sudden dissection in the weakened layers of the wall of the aorta. Aneurysms and dissections also can occur in arteries other than the aorta. Because aneurysms in children tend to rupture early, children are at greater risk for dying if the syndrome is not identified. Surgery to repair aortic aneurysms is essential for treatment.
Kaufman oculocerebrofacial syndrome is an autosomal recessive congenital disorder characterized by mental retardation, brachycephaly, upslanting palpebral fissures, eye abnormalities, and highly arched palate. It was characterized in 1971; eight cases had been identified as of 1995.
3C syndrome is a rare condition whose symptoms include heart defects, cerebellar hypoplasia, and cranial dysmorphism. It was first described in the medical literature in 1987 by Ritscher and Schinzel, for whom the disorder is sometimes named.
MID1 is a protein that belongs to the Tripartite motif family (TRIM) and is also known as TRIM18. The MID1 gene is located on the short arm of the X chromosome and loss-of-function mutations in this gene are causative of the X-linked form of a rare developmental disease, Opitz G/BBB Syndrome.
Acrocallosal syndrome is an extremely rare autosomal recessive syndrome characterized by corpus callosum agenesis, polydactyly, multiple dysmorphic features, motor and intellectual disabilities, and other symptoms. The syndrome was first described by Albert Schinzel in 1979. Mutations in KIF7 are causative for ACLS, and mutations in GLI3 are associated with a similar syndrome.
Orofaciodigital syndrome 1 (OFD1), also called Papillon-League and Psaume syndrome, is an X-linked congenital disorder characterized by malformations of the face, oral cavity, and digits with polycystic kidney disease and variable involvement of the central nervous system.
Roberts syndrome, or sometimes called pseudothalidomide syndrome, is an extremely rare autosomal recessive genetic disorder that is characterized by mild to severe prenatal retardation or disruption of cell division, leading to malformation of the bones in the skull, face, arms, and legs.
A facial cleft is an opening or gap in the face, or a malformation of a part of the face. Facial clefts is a collective term for all sorts of clefts. All structures like bone, soft tissue, skin etc. can be affected. Facial clefts are extremely rare congenital anomalies. There are many variations of a type of clefting and classifications are needed to describe and classify all types of clefting. Facial clefts hardly ever occur isolated; most of the time there is an overlap of adjacent facial clefts.
Malpuech facial clefting syndrome, also called Malpuech syndrome or Gypsy type facial clefting syndrome, is a rare congenital syndrome. It is characterized by facial clefting, a caudal appendage, growth deficiency, intellectual and developmental disability, and abnormalities of the renal system (kidneys) and the male genitalia. Abnormalities of the heart, and other skeletal malformations may also be present. The syndrome was initially described by Georges Malpuech and associates in 1983. It is thought to be genetically related to Juberg-Hayward syndrome. Malpuech syndrome has also been considered as part of a spectrum of congenital genetic disorders associated with similar facial, urogenital and skeletal anomalies. Termed "3MC syndrome", this proposed spectrum includes Malpuech, Michels and Mingarelli-Carnevale (OSA) syndromes. Mutations in the COLLEC11 and MASP1 genes are believed to be a cause of these syndromes. The incidence of Malpuech syndrome is unknown. The pattern of inheritance is autosomal recessive, which means a defective (mutated) gene associated with the syndrome is located on an autosome, and the syndrome occurs when two copies of this defective gene are inherited.
Goldberg–Shprintzen is a very rare connective tissue condition associated with mutations in KIAA1279 gene which encodes KIF-binding protein (KBP), a protein that may interact with microtubules and actin filaments. KBP may play a key role in cytoskeleton formation and neurite growth.
Lateral meningocele syndrome, also known as Lehman syndrome, is a very rare skeletal disorder with facial anomalies, hypotonia, and meningocele-related neurologic dysfunction. These protrusions form from membranes surrounding the spinal cord in gaps in the spine (vertebrae). They most often occur in the lower spine and damage the surrounding nerves that spread throughout the rest of the body. Examples of resulting damages are bladder function, prickling or tingling sensations, stiffness and weakness in the legs, and back pain. People affected with lateral meningocele typically have high arched eyebrows, widely spaced eyes, droopy eyes, and other facial features. There have been only 14 reported individuals with lateral meningocele syndrome with 7 of those who have a molecularly confirmed diagnosis. There is no specific treatment for this syndrome, but only supportive management including lateral spinal meningoceles, psychomotor development, musculoskeletal, and routine management.
Holoprosencephaly-ectrodactyly-cleft lip/palate syndrome, also simply known as Hartsfield syndrome, is a rare genetic disorder characterized by the presence of variable holoprosencephaly, ectrodactyly, cleft lip and palate, alongside generalized ectodermal abnormalities. Additional findings include endocrine anomalies and developmental delays.