PIONIER (Very Large Telescope)

Last updated
Precision Integrated-Optics Near-infrared Imaging ExpeRiment
Four VLT Unit Telescopes Working as One.jpg
Alternative namesPIONIER  OOjs UI icon edit-ltr-progressive.svg
Part ofVery Large Telescope Interferometer  OOjs UI icon edit-ltr-progressive.svg
First light November 2010  OOjs UI icon edit-ltr-progressive.svg
Telescope styleastronomical instrument  OOjs UI icon edit-ltr-progressive.svg

The Precision Integrated-optics Near-infrared Imaging Experiment (PIONIER) is a visiting instrument at the ESO's Paranal Observatory, [1] part of the VLTI astronomical observatory. It combines the light from four telescopes simultaneously and provide 0.002 arc seconds of angular resolution, the equivalent angular resolution of a 100 m telescope.[ citation needed ]

Contents

PIONIER has been built at LAOG and has been installed at VLTI in November 2010.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Very Large Telescope</span> Telescope in the Atacama Desert, Chile

The Very Large Telescope (VLT) is an astronomical facility operated since 1998 by the European Southern Observatory, located on Cerro Paranal in the Atacama Desert of northern Chile. It consists of four individual telescopes, each equipped with a primary mirror that measures 8.2 meters in diameter. These optical telescopes, named Antu, Kueyen, Melipal, and Yepun, are generally used separately but can be combined to achieve a very high angular resolution. The VLT array is also complemented by four movable Auxiliary Telescopes (ATs) with 1.8-meter apertures.

<span class="mw-page-title-main">European Southern Observatory</span> Intergovernmental organization and observatory in Chile

The European Organisation for Astronomical Research in the Southern Hemisphere, commonly referred to as the European Southern Observatory (ESO), is an intergovernmental research organisation made up of 16 member states for ground-based astronomy. Created in 1962, ESO has provided astronomers with state-of-the-art research facilities and access to the southern sky. The organisation employs over 750 staff members and receives annual member state contributions of approximately €162 million. Its observatories are located in northern Chile.

<span class="mw-page-title-main">VLT Survey Telescope</span> Telescope in the Atacama Desert, Chile

The VLT Survey Telescope (VST) is a telescope located at ESO's Paranal Observatory in the Atacama Desert of northern Chile. It is housed in an enclosure immediately adjacent to the four Very Large Telescope (VLT) Unit Telescopes on the summit of Cerro Paranal. The VST is a wide-field survey telescope with a field of view twice as broad as the full Moon. It is the largest telescope in the world designed to exclusively survey the sky in visible light.

<span class="mw-page-title-main">VISTA (telescope)</span>

The VISTA is a wide-field reflecting telescope with a 4.1 metre mirror, located at the Paranal Observatory in Chile. It is operated by the European Southern Observatory and started science operations in December 2009. VISTA was conceived and developed by a consortium of universities in the United Kingdom led by Queen Mary University of London and became an in-kind contribution to ESO as part of the UK's accession agreement, with the subscription paid by the UK Science and Technology Facilities Council (STFC).

<span class="mw-page-title-main">New Technology Telescope</span>

The New Technology Telescope or NTT is a 3.58-metre Ritchey–Chrétien telescope operated by the European Southern Observatory. It began operations in 1989. It is located in Chile at the La Silla Observatory and was an early pioneer in the use of active optics. The telescope and its enclosure were built to a revolutionary design for optimal image quality.

<span class="mw-page-title-main">Laser guide star</span> Artificial star image used by telescopes

A laser guide star is an artificial star image created for use in astronomical adaptive optics systems, which are employed in large telescopes in order to correct atmospheric distortion of light. Adaptive optics (AO) systems require a wavefront reference source of light called a guide star. Natural stars can serve as point sources for this purpose, but sufficiently bright stars are not available in all parts of the sky, which greatly limits the usefulness of natural guide star adaptive optics. Instead, one can create an artificial guide star by shining a laser into the atmosphere. Light from the beam is reflected by components in the upper atmosphere back into the telescope. This star can be positioned anywhere the telescope desires to point, opening up much greater amounts of the sky to adaptive optics.

<span class="mw-page-title-main">La Silla Observatory</span> Astronomical observatory in Chile

La Silla Observatory is an astronomical observatory in Chile with three telescopes built and operated by the European Southern Observatory (ESO). Several other telescopes are also located at the site and are partly maintained by ESO. The observatory is one of the largest in the Southern Hemisphere and was the first in Chile to be used by ESO.

<span class="mw-page-title-main">Paranal Observatory</span> Astronomical observatory in Chile

Paranal Observatory is an astronomical observatory operated by the European Southern Observatory (ESO). It is located in the Atacama Desert of Northern Chile on Cerro Paranal at 2,635 m (8,645 ft) altitude, 120 km (70 mi) south of Antofagasta. By total light-collecting area, it is the largest optical-infrared observatory in the Southern Hemisphere; worldwide, it is second to the Mauna Kea Observatory on Hawaii.

<span class="mw-page-title-main">Multi-unit spectroscopic explorer</span> Integral field spectrograph installed at the Very Large Telescope

The Multi-Unit Spectroscopic Explorer (MUSE) is an integral field spectrograph installed at the Very Large Telescope (VLT) of the European Southern Observatory (ESO). It operates in the visible wavelength range, and combines a wide field of view with a high spatial resolution and a large simultaneous spectral range. It is specifically designed to take advantage of the improved spatial resolution provided by adaptive optics, offering diffraction-limited performance in specific configurations. MUSE had first light on the VLT’s Unit Telescope 4 (UT4) on 31 January 2014.

Cerro Paranal is a mountain in the Atacama Desert of northern Chile and is the home of the Paranal Observatory. Prior to the construction of the observatory, the summit was a horizontal control point with an elevation of 2,664 m (8,740 ft); now it is 2,635 m (8,645 ft) above sea level. It is the site of the Very Large Telescope and the VLT Survey Telescope. It is located 120 km (75 mi) south of Antofagasta and 80 km (50 mi) north of Taltal, as well as 15 km (9.3 mi) inland and 5 km (3.1 mi) west of highway B-710.

<span class="mw-page-title-main">Extremely Large Telescope</span> Major astronomical facility in Chile

The Extremely Large Telescope (ELT) is an astronomical observatory under construction. When completed, it will be the world's largest optical/near-infrared ELT. Part of the European Southern Observatory (ESO) agency, it is located on top of Cerro Armazones in the Atacama Desert of northern Chile.

<span class="mw-page-title-main">Max Planck Institute for Astronomy</span> Research institute of the Max Planck Society, Germany

The Max-Planck-Institut für Astronomie is a research institute of the Max Planck Society (MPG). It is located in Heidelberg, Baden-Württemberg, Germany near the top of the Königstuhl, adjacent to the historic Landessternwarte Heidelberg-Königstuhl astronomical observatory. The institute primarily conducts basic research in the natural sciences in the field of astronomy.

<span class="mw-page-title-main">Atacama Pathfinder Experiment</span> Radio telescope in the Atacama desert, northern Chile

The Atacama Pathfinder Experiment (APEX) is a radio telescope 5,064 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert in northern Chile, 50 km east of San Pedro de Atacama built and operated by three European research institutes. The main dish has a diameter of 12 m and consists of 264 aluminium panels with an average surface accuracy of 17 micrometres (rms). The telescope was officially inaugurated on September 25, 2005.

<span class="mw-page-title-main">Astronomical interferometer</span> Array used for astronomical observations

An astronomical interferometer or telescope array is a set of separate telescopes, mirror segments, or radio telescope antennas that work together as a single telescope to provide higher resolution images of astronomical objects such as stars, nebulas and galaxies by means of interferometry. The advantage of this technique is that it can theoretically produce images with the angular resolution of a huge telescope with an aperture equal to the separation, called baseline, between the component telescopes. The main drawback is that it does not collect as much light as the complete instrument's mirror. Thus it is mainly useful for fine resolution of more luminous astronomical objects, such as close binary stars. Another drawback is that the maximum angular size of a detectable emission source is limited by the minimum gap between detectors in the collector array.

<span class="mw-page-title-main">ESO Hotel</span> Hotel in Chile

ESO Hotel at Cerro Paranal is the accommodation for Paranal Observatory in Chile since 2002. It is mainly used for the ESO scientists and engineers who work there on a roster system. It has been called a "boarding house on Mars", because the desert surroundings are Mars-like, and an "Oasis for astronomers". It is not a commercial hotel, and the public cannot book rooms.

<span class="mw-page-title-main">ESPRESSO</span> Echelle spectrograph on ESO VLT, Chile

ESPRESSO is a third-generation, fiber fed, cross-dispersed, echelle spectrograph mounted on the European Southern Observatory's Very Large Telescope (VLT). The unit saw its first light with one VLT in December 2017 and first light with all four VLT units in February 2018.

<span class="mw-page-title-main">AMBER (Very Large Telescope)</span> Instrument mounted on the Very Large Telescope

AMBER, the Astronomical Multi-Beam Recombiner, is an instrument mounted on the Very Large Telescope (VLT), combining the light of the three Unit Telescopes in the near-infrared of the VLT-Interferometer (VLTI). It is at the source of a considerable number of publications in the field of optical long-baseline interferometry.

<span class="mw-page-title-main">Spectro-Polarimetric High-Contrast Exoplanet Research</span>

Spectro-Polarimetric High-contrast Exoplanet REsearch (VLT-SPHERE) is an adaptive optics system and coronagraphic facility at the Very Large Telescope (VLT). It provides direct imaging as well as spectroscopic and polarimetric characterization of exoplanet systems. The instrument operates in the visible and near infrared, achieving exquisite image quality and contrast over a small field of view around bright targets.

<span class="mw-page-title-main">Visible Multi Object Spectrograph</span> Wide field imager and multi-object spectrograph at the VLT in Chile

The Visible Multi-Object Spectrograph (VIMOS) is a wide field imager and a multi-object spectrograph installed at the European Southern Observatory's Very Large Telescope (VLT), in Chile. The instrument used for deep astronomical surveys delivers visible images and spectra of up to 1,000 galaxies at a time. VIMOS images four rectangular areas of the sky, 7 by 8 arcminutes each, with gaps of 2 arcminutes between them. Its principal investigator was Olivier Le Fèvre.

<span class="mw-page-title-main">Frank Eisenhauer</span> German astronomer

Frank Eisenhauer is a German astronomer and astrophysicist, a director of the Max Planck Institute for Extraterrestrial Physics (MPE), and a professor at Technical University of Munich. He is best known for his contributions to interferometry and spectroscopy and the study of the black hole at the centre of the Milky Way.

References

  1. "All Four VLT Unit Telescopes Working as One". ESO Picture of the Week. Retrieved 15 November 2011.