Pattern calculus

Last updated

Pattern calculus bases all computation on pattern matching of a very general kind. Like lambda calculus, it supports a uniform treatment of function evaluation. Also, it allows functions to be passed as arguments and returned as results. In addition, pattern calculus supports uniform access to the internal structure of arguments, be they pairs or lists or trees. Also, it allows patterns to be passed as arguments and returned as results. Uniform access is illustrated by a pattern-matching function size that computes the size of an arbitrary data structure. In the notation of the programming language bondi, it is given by the recursive function

letrecsize=|xy->(sizex)+(sizey)|x->1

The second, or default casex -> 1 matches the pattern x against the argument and returns 1. This case is used only if the matching failed in the first case. The first, or special case matches against any compound, such as a non-empty list, or pair. Matching binds x to the left component and y to the right component. Then the body of the case adds the sizes of these components together.

Similar techniques yield generic queries for searching and updating. Combining recursion and decomposition in this way yields path polymorphism .

The ability to pass patterns as parameters (pattern polymorphism) is illustrated by defining a generic eliminator. Suppose given constructors Leaf for creating the leaves of a tree, and Count for converting numbers into counters. The corresponding eliminators are then

elimLeaf=|Leafy->yelimCount=|County->y

For example, elimLeaf (Leaf 3) evaluates to 3 as does elimCount (Count 3).

These examples can be produced by applying the generic eliminator elim to the constructors in question. It is defined by

elim=|x->|{y}xy->y

Now elim Leaf evaluates to | {y} Leaf y -> y which is equivalent to elimLeaf. Also elim Count is equivalent to elimCount.

In general, the curly braces {} contain the bound variables of the pattern, so that x is free and y is bound in | {y} x y -> y.

Related Research Articles

In programming language theory, lazy evaluation, or call-by-need, is an evaluation strategy which delays the evaluation of an expression until its value is needed and which also avoids repeated evaluations (sharing).

Lambda calculus is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation that can be used to simulate any Turing machine. It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics.

ML is a general-purpose functional programming language. It is known for its use of the polymorphic Hindley–Milner type system, which automatically assigns the types of most expressions without requiring explicit type annotations, and ensures type safety – there is a formal proof that a well-typed ML program does not cause runtime type errors. ML provides pattern matching for function arguments, garbage collection, imperative programming, call-by-value and currying. It is used heavily in programming language research and is one of the few languages to be completely specified and verified using formal semantics. Its types and pattern matching make it well-suited and commonly used to operate on other formal languages, such as in compiler writing, automated theorem proving, and formal verification.

Templates are a feature of the C++ programming language that allows functions and classes to operate with generic types. This allows a function or class to work on many different data types without being rewritten for each one.

Generic programming is a style of computer programming in which algorithms are written in terms of types to-be-specified-later that are then instantiated when needed for specific types provided as parameters. This approach, pioneered by the ML programming language in 1973, permits writing common functions or types that differ only in the set of types on which they operate when used, thus reducing duplication. Such software entities are known as generics in Ada, C#, Delphi, Eiffel, F#, Java, Nim, Python, Go, Rust, Swift, TypeScript and Visual Basic .NET. They are known as parametric polymorphism in ML, Scala, Julia, and Haskell ; templates in C++ and D; and parameterized types in the influential 1994 book Design Patterns.

In programming language theory and type theory, polymorphism is the provision of a single interface to entities of different types or the use of a single symbol to represent multiple different types. The concept is borrowed from a principle in biology where an organism or species can have many different forms or stages.

In computer science, pattern matching is the act of checking a given sequence of tokens for the presence of the constituents of some pattern. In contrast to pattern recognition, the match usually has to be exact: "either it will or will not be a match." The patterns generally have the form of either sequences or tree structures. Uses of pattern matching include outputting the locations of a pattern within a token sequence, to output some component of the matched pattern, and to substitute the matching pattern with some other token sequence.

In computer programming, especially functional programming and type theory, an algebraic data type (ADT) is a kind of composite type, i.e., a type formed by combining other types.

Curry is an experimental functional logic programming language, based on the Haskell language. It merges elements of functional and logic programming, including constraint programming integration.

In computer science, a tagged union, also called a variant, variant record, choice type, discriminated union, disjoint union, sum type or coproduct, is a data structure used to hold a value that could take on several different, but fixed, types. Only one of the types can be in use at any one time, and a tag field explicitly indicates which one is in use. It can be thought of as a type that has several "cases", each of which should be handled correctly when that type is manipulated. This is critical in defining recursive datatypes, in which some component of a value may have the same type as the value itself, for example in defining a type for representing trees, where it is necessary to distinguish multi-node subtrees and leaves. Like ordinary unions, tagged unions can save storage by overlapping storage areas for each type, since only one is in use at a time.

<span class="mw-page-title-main">Conditional (computer programming)</span> Control flow statement that executes code according to some condition(s)

In computer science, conditionals are programming language commands for handling decisions. Specifically, conditionals perform different computations or actions depending on whether a programmer-defined boolean condition evaluates to true or false. In terms of control flow, the decision is always achieved by selectively altering the control flow based on some condition.

System F is a typed lambda calculus that introduces, to simply typed lambda calculus, a mechanism of universal quantification over types. System F formalizes parametric polymorphism in programming languages, thus forming a theoretical basis for languages such as Haskell and ML. It was discovered independently by logician Jean-Yves Girard (1972) and computer scientist John C. Reynolds.

In computer science and logic, a dependent type is a type whose definition depends on a value. It is an overlapping feature of type theory and type systems. In intuitionistic type theory, dependent types are used to encode logic's quantifiers like "for all" and "there exists". In functional programming languages like Agda, ATS, Coq, F*, Epigram, and Idris, dependent types help reduce bugs by enabling the programmer to assign types that further restrain the set of possible implementations.

The simply typed lambda calculus, a form of type theory, is a typed interpretation of the lambda calculus with only one type constructor that builds function types. It is the canonical and simplest example of a typed lambda calculus. The simply typed lambda calculus was originally introduced by Alonzo Church in 1940 as an attempt to avoid paradoxical use of the untyped lambda calculus.

In mathematics, Church encoding is a means of representing data and operators in the lambda calculus. The Church numerals are a representation of the natural numbers using lambda notation. The method is named for Alonzo Church, who first encoded data in the lambda calculus this way.

In programming languages and type theory, parametric polymorphism allows a single piece of code to be given a "generic" type, using variables in place of actual types, and then instantiated with particular types as needed. Parametrically polymorphic functions and data types are sometimes called generic functions and generic datatypes, respectively, and they form the basis of generic programming.

In computer science, a type class is a type system construct that supports ad hoc polymorphism. This is achieved by adding constraints to type variables in parametrically polymorphic types. Such a constraint typically involves a type class T and a type variable a, and means that a can only be instantiated to a type whose members support the overloaded operations associated with T.

In the area of mathematical logic and computer science known as type theory, a kind is the type of a type constructor or, less commonly, the type of a higher-order type operator. A kind system is essentially a simply typed lambda calculus "one level up", endowed with a primitive type, denoted and called "type", which is the kind of any data type which does not need any type parameters.

Join-patterns provides a way to write concurrent, parallel and distributed computer programs by message passing. Compared to the use of threads and locks, this is a high level programming model using communication constructs model to abstract the complexity of concurrent environment and to allow scalability. Its focus is on the execution of a chord between messages atomically consumed from a group of channels.

Flix is a functional, imperative, and logic programming language developed at Aarhus University, with funding from the Independent Research Fund Denmark, and by a community of open source contributors. The Flix language supports algebraic data types, pattern matching, parametric polymorphism, currying, higher-order functions, extensible records, channel and process-based concurrency, and tail call elimination. Two notable features of Flix are its type and effect system and its support for first-class Datalog constraints.