Peter Beyer | |
---|---|
Born | |
Nationality | German |
Awards | 2002 European Science Prize |
Scientific career | |
Fields | Cell Biology |
Institutions | University of Freiburg |
Peter Beyer (born 9 May 1952) is a German Professor for Cell Biology at the Faculty of Biology of the University of Freiburg. He is known as co-inventor of Golden Rice, together with Ingo Potrykus from the ETH Zurich.
Peter Beyer studied Biology at the universities of Marburg and Freiburg. In 1981 he was awarded his doctorate in Cell Biology from the University of Freiburg and received his postdoctoral lecture qualification in 2000. Afterwards he was appointed Professor for Cell Biology at the Faculty of Biology. Since 2001 Beyer is Vice-Director Plant Biotechnology of the Centre for Applied Biosciences (ZAB) in Freiburg.
Starting 2005 Peter Beyer became Principal Investigator in the ProVitaMinRice Consortium, a program funded by the Bill & Melinda Gates Foundation and one of the selected Grand Challenges in Global Health projects. The project «Engineering Rice for High Beta-Carotene, Vitamin E and Enhanced Iron and Zinc Bioavailability», designed to further biofortify Golden Rice with other vital micronutrients has been awarded 11.3 Million USD to achieve its goals. [1] Research is handled by a consortium of seven laboratories in a number of countries.
Apart from Beyer's group the project involves groups from Baylor College of Medicine, Michigan State University, the International Rice Research Institute and PhilRice, both in the Philippines, the Cuu Long Delta Rice Research Institute, and the Chinese University of Hong Kong. [2]
Peter Beyer’s research focusses on the biochemistry, molecular biology and regulation of the plant [prenyl-lipid metabolism (sterols, vitamins E and K, carotenoids. Besides basic science the group focuses on applied pathway engineering to improve the nutritional value of crop plants. Peter Beyer pioneered the metabolic engineering of plants with engineering the beta-carotene biosynthetic pathway into rice endosperm, published 2000 in Science , [3] which is widely appreciated as one of the success stories of Synthetic Biology. Consequently, Beyer is PI in the Centre for Biological Signaling Studies, [4] which is devoted to this novel field in science.
Beyer has been recognized as a Pioneer Member of the American Society of Plant Biologists. [7]
Vitamin A is a fat-soluble vitamin that is an essential nutrient. The term "vitamin A" encompasses a group of chemically related organic compounds that includes retinol, retinyl esters, and several provitamin (precursor) carotenoids, most notably β-carotene (beta-carotene). Vitamin A has multiple functions: essential in embryo development for growth, maintaining the immune system, and healthy vision, where it combines with the protein opsin to form rhodopsin – the light-absorbing molecule necessary for both low-light and color vision.
Genetically modified foods, also known as genetically engineered foods, or bioengineered foods are foods produced from organisms that have had changes introduced into their DNA using various methods of genetic engineering. Genetic engineering techniques allow for the introduction of new traits as well as greater control over traits when compared to previous methods, such as selective breeding and mutation breeding.
Golden rice is a variety of rice produced through genetic engineering to biosynthesize beta-carotene, a precursor of vitamin A, in the edible parts of the rice. It is intended to produce a fortified food to be grown and consumed in areas with a shortage of dietary vitamin A. Genetically modified golden rice can produce up to 23 times as much beta-carotene as the original golden rice.
Carotenoids are yellow, orange, and red organic pigments that are produced by plants and algae, as well as several bacteria, archaea, and fungi. Carotenoids give the characteristic color to pumpkins, carrots, parsnips, corn, tomatoes, canaries, flamingos, salmon, lobster, shrimp, and daffodils. Over 1,100 identified carotenoids can be further categorized into two classes – xanthophylls and carotenes.
Recombinant DNA (rDNA) molecules are DNA molecules formed by laboratory methods of genetic recombination that bring together genetic material from multiple sources, creating sequences that would not otherwise be found in the genome.
Ingo Potrykus is Professor Emeritus of Plant Sciences at the Institute of Plant Sciences of the Swiss Federal Institute of Technology (ETH), Zurich from which he retired in 1999. His research group applied gene technology to contribute to food security in developing countries. Together with Peter Beyer, he is one of the co-inventors of golden rice. In 2014 he was chairman of the Golden Rice Humanitarian Board.
Carotenoid oxygenases are a family of enzymes involved in the cleavage of carotenoids to produce, for example, retinol, commonly known as vitamin A. This family includes an enzyme known as RPE65 which is abundantly expressed in the retinal pigment epithelium where it catalyzed the formation of 11-cis-retinol from all-trans-retinyl esters.
Vitamin A deficiency (VAD) or hypovitaminosis A is a lack of vitamin A in blood and tissues. It is common in poorer countries, especially among children and women of reproductive age, but is rarely seen in more developed countries. Nyctalopia is one of the first signs of VAD, as the vitamin has a major role in phototransduction; but it is also the first symptom that is reversed when vitamin A is consumed again. Xerophthalmia, keratomalacia, and complete blindness can follow if the deficiency is more severe.
Biomolecular engineering is the application of engineering principles and practices to the purposeful manipulation of molecules of biological origin. Biomolecular engineers integrate knowledge of biological processes with the core knowledge of chemical engineering in order to focus on molecular level solutions to issues and problems in the life sciences related to the environment, agriculture, energy, industry, food production, biotechnology and medicine.
Genetically modified plants have been engineered for scientific research, to create new colours in plants, deliver vaccines, and to create enhanced crops. Plant genomes can be engineered by physical methods or by use of Agrobacterium for the delivery of sequences hosted in T-DNA binary vectors. Many plant cells are pluripotent, meaning that a single cell from a mature plant can be harvested and then under the right conditions form a new plant. This ability is most often taken advantage by genetic engineers through selecting cells that can successfully be transformed into an adult plant which can then be grown into multiple new plants containing transgene in every cell through a process known as tissue culture.
Damascenones are a series of closely related chemical compounds that are components of a variety of essential oils. The damascenones belong to a family of chemicals known as rose ketones, which also includes damascones and ionones. beta-Damascenone is a major contributor to the aroma of roses, despite its very low concentration, and is an important fragrance chemical used in perfumery.
Genetically modified rice are rice strains that have been genetically modified. Rice plants have been modified to increase micronutrients such as vitamin A, accelerate photosynthesis, tolerate herbicides, resist pests, increase grain size, generate nutrients, flavors or produce human proteins.
The 1000 Plant Transcriptomes Initiative (1KP) was an international research effort to establish the most detailed catalogue of genetic variation in plants. It was announced in 2008 and headed by Gane Ka-Shu Wong and Michael Deyholos of the University of Alberta. The project successfully sequenced the transcriptomes of 1000 different plant species by 2014; its final capstone products were published in 2019.
The Faculty of Biology is one of the eleven faculties of the University of Freiburg in Freiburg im Breisgau, Baden-Württemberg, Germany. It is part of a strong life sciences network including institutions such as the Max Planck Institute of Immunobiology and Epigenetics, the Bernstein Center Freiburg (BCF), the Center for Applied Biosciences and the Center for Biological Systems Analysis, which started operations in 2008 as offspring of the Freiburg Initiative for Systems Biology (FRISYS), funded by the Federal Ministry of Education and Research (BMBF).
15-cis-phytoene desaturases, are enzymes involved in the carotenoid biosynthesis in plants and cyanobacteria. Phytoene desaturases are membrane-bound enzymes localized in plastids and introduce two double bonds into their colorless substrate phytoene by dehydrogenation and isomerize two additional double bonds. This reaction starts a biochemical pathway involving three further enzymes called the poly-cis pathway and leads to the red colored lycopene. The homologous phytoene desaturase found in bacteria and fungi (CrtI) converts phytoene directly to lycopene by an all-trans pathway.
Phytoene desaturase (3,4-didehydrolycopene-forming) is an enzyme with systematic name 15-cis-phytoene:acceptor oxidoreductase (3,4-didehydrolycopene-forming). This enzyme catalyses the following chemical reaction
Phytoene desaturase (lycopene-forming) are enzymes found in archaea, bacteria and fungi that are involved in carotenoid biosynthesis. They catalyze the conversion of colorless 15-cis-phytoene into a bright red lycopene in a biochemical pathway called the poly-trans pathway. The same process in plants and cyanobacteria utilizes four separate enzymes in a poly-cis pathway.
Prolycopene isomerase is an enzyme with systematic name 7,9,7',9'-tetracis-lycopene cis-trans-isomerase. This enzyme catalyses the following chemical reaction
Beta-carotene isomerase is an enzyme with systematic name beta-carotene 9-cis-all-trans isomerase. This enzyme catalyses the following chemical reaction
Peter M. Bramley is a British biochemist and emeritus professor of biochemistry at Royal Holloway, University of London, where he was the Head of the School of Biological Sciences from 2006 to 2011. His research focuses on the biosynthesis of carotenoids in plants and microorganisms