Plated wire memory

Last updated

Plated wire memory is a variation of core memory developed by Bell Laboratories in 1957. Its primary advantage was that it could be machine-assembled, which potentially led to lower prices than the hand-assembled core.

Instead of threading individual ferrite cores on wires, plated wire memory used a grid of wires coated with a thin layer of iron-nickel alloy (called permalloy). The magnetic field normally stored in the ferrite core was instead stored on the wire itself. Operation was generally similar to core memory, with the wire itself acting as the data line and the magnetic domains providing the individual bit locations defined by address (word) lines running on either side of (and perpendicular to) the data wire.

Early versions operated in a destructive read mode requiring a write after read to restore data. Non-destructive read mode was possible but this required much great uniformity of the magnetic coating.

Increasingly high density semiconductor memories such as the 1K Dynamic RAM provided the higher storage densities and higher speeds needed for large scale application such as mainframe computers.

Plated wire memory has been used in a number of applications, typically in aerospace. It was used in the UNIVAC 1110 and UNIVAC 9000 series computers, the Viking program that sent landers to Mars, the Voyager space probes, a prototype guidance computer for the Minuteman-III, the Space Shuttle Main Engine Controllers, [1] KH-9 Hexagon reconnaissance satellite [2] and in the Hubble Space Telescope.

Related Research Articles

In computing, a core dump, crash dump, memory dump, or system dump consists of the recorded state of the working memory of a computer program at a specific time, generally when the program has crashed or otherwise terminated abnormally. In practice, other key pieces of program state are usually dumped at the same time, including the processor registers, which may include the program counter and stack pointer, memory management information, and other processor and operating system flags and information. A snapshot dump is a memory dump requested by the computer operator or by the running program, after which the program is able to continue. Core dumps are often used to assist in diagnosing and debugging errors in computer programs.

Magnetic-core memory predominant form of random-access computer memory for 20 years between about 1955 and 1975

Magnetic-core memory was the predominant form of random-access computer memory for 20 years between about 1955 and 1975. It was part of a family of related technologies which bridged the gap between vacuum tubes and semiconductors by exploiting the magnetic properties of materials to perform switching and amplification. Such memory is often just called core memory, or, informally, core.

UNIVAC I General purpose computer design for business application first produced in the United States in 1951

The UNIVAC I was the first general purpose electronic digital computer design for business application produced in the United States. It was designed principally by J. Presper Eckert and John Mauchly, the inventors of the ENIAC. Design work was started by their company, Eckert–Mauchly Computer Corporation (EMCC), and was completed after the company had been acquired by Remington Rand. In the years before successor models of the UNIVAC I appeared, the machine was simply known as "the UNIVAC".

UNIVAC is a line of electronic digital stored-program computers starting with the products of the Eckert–Mauchly Computer Corporation. Later the name was applied to a division of the Remington Rand company and successor organizations.

Bubble memory type of non-volatile computer memory

Bubble memory is a type of non-volatile computer memory that uses a thin film of a magnetic material to hold small magnetized areas, known as bubbles or domains, each storing one bit of data. The material is arranged to form a series of parallel tracks that the bubbles can move along under the action of an external magnetic field. The bubbles are read by moving them to the edge of the material where they can be read by a conventional magnetic pickup, and then rewritten on the far edge to keep the memory cycling through the material. In operation, bubble memories are similar to delay line memory systems.

Thin-film memory is a high-speed variation of core memory developed by Sperry Rand in a government-funded research project.

UNIVAC 1100/2200 series

The UNIVAC 1100/2200 series is a series of compatible 36-bit computer systems, beginning with the UNIVAC 1107 in 1962, initially made by Sperry Rand. The series continues to be supported today by Unisys Corporation as the ClearPath Dorado Series. The solid-state 1107 model number was in the same sequence as the earlier vacuum-tube computers, but the early computers were not compatible with the solid-state successors.

Twistor memory is a form of computer memory formed by wrapping magnetic tape around a current-carrying wire. Operationally, twistor was very similar to core memory. Twistor could also be used to make ROM memories, including a re-programmable form known as piggyback twistor. Both forms were able to be manufactured using automated processes, which was expected to lead to much lower production costs than core-based systems.

Magnetic storage storage of data on a magnetized medium

Magnetic storage or magnetic recording is the storage of data on a magnetized medium. Magnetic storage uses different patterns of magnetisation in a magnetisable material to store data and is a form of non-volatile memory. The information is accessed using one or more read/write heads.

The UNISERVO tape drive was the primary I/O device on the UNIVAC I computer. Its place in history is assured as it was the first tape drive for a commercially sold computer.

Ferrite bead passive electric component that suppresses high frequency noise in electronic circuits. It is a specific type of electronic choke

A ferrite bead or ferrite choke is a passive electric component that suppresses high-frequency noise in electronic circuits. It is a specific type of electronic choke. Ferrite beads employ high-frequency current dissipation in a ferrite ceramic to build high-frequency noise suppression devices. Ferrite beads may also be called blocks, cores, rings, EMI filters, or chokes.

Areal density is a measure of the quantity of information bits that can be stored on a given length of track, area of surface, or in a given volume of a computer storage medium. Generally, higher density is more desirable, for it allows more data to be stored in the same physical space. Density therefore has a direct relationship to storage capacity of a given medium. Density also generally affects the performance within a particular medium, as well as price.

Ferroelectric RAM electronic device using the ferroelectric effect to produce low density random access memory

Ferroelectric RAM is a random-access memory similar in construction to DRAM but using a ferroelectric layer instead of a dielectric layer to achieve non-volatility. FeRAM is one of a growing number of alternative non-volatile random-access memory technologies that offer the same functionality as flash memory.

Ferrite (magnet) ceramic materials, many of them magnetic

A ferrite is a ceramic material made by mixing and firing large proportions of iron(III) oxide (Fe2O3, rust) blended with small proportions of one or more additional metallic elements, such as barium, manganese, nickel, and zinc. They are electrically non-conductive, meaning that they are insulators, and ferrimagnetic, meaning they can easily be magnetized or attracted to a magnet. Ferrites can be divided into two families based on their resistance to being demagnetized (magnetic coercivity).

Barium ferrite, abbreviated BaFe, BaM, is the chemical compound with the formula BaFe12O19. This and related ferrite materials are components in magnetic stripe cards and loudspeaker magnets. BaFe is described as Ba2+(Fe3+)12(O2−)19. The Fe3+ centers are ferromagnetically coupled. This area of technology is usually considered to be an application of the related fields of materials science and solid state chemistry.

Choke (electronics) A type of electronic inductor

In electronics, a choke is an inductor used to block higher-frequency while passing direct current (DC) and lower-frequencies of alternating current (AC) in an electrical circuit. A choke usually consists of a coil of insulated wire often wound on a magnetic core, although some consist of a doughnut-shaped "bead" of ferrite material strung on a wire. The choke's impedance increases with frequency. Its low electrical resistance passes both AC and DC with little power loss, but its reactance limits the amount of AC passed.

In electronics, a ferrite core is a type of magnetic core made of ferrite on which the windings of electric transformers and other wound components such as inductors are formed. It is used for its properties of high magnetic permeability coupled with low electrical conductivity. Because of their comparatively low losses at high frequencies, they are extensively used in the cores of RF transformers and inductors in applications such as switched-mode power supplies, and ferrite loopstick antennas for AM radio receivers.

Dr. Dudley Allen Buck (1927–1959) was an electrical engineer and inventor of components for high-speed computing devices in the 1950s. He is best known for invention of the cryotron, a superconductive computer component that is operated in liquid helium at a temperature near absolute zero. Other inventions were ferroelectric memory, content addressable memory, non-destructive sensing of magnetic fields, and writing printed circuits with a beam of electrons.

Vacuum tube computer computer using vacuum tubes instead of transistors (prevalent in 1950s)

A vacuum tube computer, now termed a first-generation computer, is a computer that uses vacuum tubes for logic circuitry. Although superseded by second generation, transistorized computers, vacuum tube computers continued to be built into the 1960s. These computers were mostly one-of-a-kind designs.

Rod memory is one of the many variations on magnetic core memory that attempts to lower costs by automating its manufacturing. It was introduced by NCR in 1964 as part of the NCR 315 RMC computer, RMC for "rod memory computer". It was also used in their Century line.


  1. Tomayko, James. "Chapter Four: Computers in the Space Shuttle Avionics System". Computers in Spaceflight: The NASA Experience. NASA. Retrieved 8 August 2011.
  2. "The HEXAGON story". National Reconnaissance Office. 1988.