Power assembly

Last updated

The term power assembly refers to an Electro-Motive Diesel (EMD) engine sub-assembly designed to be "easily" removed and replaced in order to restore engine performance lost to wear or engine failure. Typical of heavy-duty internal combustion engines used in industrial applications, EMD engines are designed to allow the cylinder liners, pistons, piston rings and connecting rods to be replaced at overhaul without removing the entire engine assembly from its application location. This increases engine value, reduces downtime and allows the engine to be returned to true new engine performance. Other terms such as cylinder pack, liner pack, cylinder assembly and cylinder kit are used in the engine industry to describe similar assemblies. In the large-engine industry, the term "power assembly" has also become generic and is often used to refer to the assemblies used in non-EMD engines where "power pack" may be the preferred term, although both terms are functionally the same.

Electro-Motive Diesel (EMD) is an American manufacturer of diesel-electric locomotives, locomotive products and diesel engines for the rail industry. The company is owned by Caterpillar through its subsidiary Progress Rail Services.

Because of the size and weight of the engine assembly and the difficulties of removing and transporting them for repair, they are typically serviced on-site in stationary applications and in the ship or locomotive in transportation applications. Designing the engine for "easy" service is done out of necessity rather than the desire to increase engine serviceability. Power assemblies are large and heavy and overhead lifting equipment sufficient to lift the fixture and assembly are required.

An EMD power assembly consists of the following components:

  1. Cylinder head assembly (including valves, springs, keepers etc.) less fuel system components
  2. Cylinder liner
  3. Piston and piston rings
  4. Piston carrier
  5. Connecting rod

In an EMD diesel engine, since two power assemblies share a common connecting-rod journal, and since the power assemblies are directly opposite each other rather than staggered as in a typical V-type engine, two different power assemblies are required in a single engine. The difference between the two assemblies is in the connecting rods. One connecting rod "big end" has to fit inside that of its companion rod and the two types are referred to as "blade rods" and "fork rods". The "fork rod" is logically the "master" as only it has a "rod cap", in this specific case referred to as a "basket", whereas the "blade rod" is logically the "slave" as its "big toe" is designed to fit completely within, and is guided by, and is retained by the "fork", and both are retained by the single "basket".

Several situations can require power assembly replacement. Most are due to failure within the power assembly itself such as a dropped valve, broken piston or internal coolant leak. Less common are replacements to repair catastrophic failures such as broken connecting rods or a "hydro-locked" power assembly that has been broken or knocked out of the cylinder block when the cylinder filled with coolant during engine operation and the inability of the piston to compress the liquid caused catastrophic failure. Complete power assembly replacements, where all of the assemblies in an engine are replaced, are least common and are normally done as part of a comprehensive engine overhaul.

In a normal in-service power assembly replacement situation, the replacement will follow an inspection of the engine specifically performed to find internal engine failures. With the engine crankcase access and cylinder block airbox covers removed, a visual inspection of the engine's rotating and reciprocating assemblies can be performed. The use of a fiber optic endoscope (flexible borescope) may facilitate this inspection and evaluation, but this is not a requirement, nor is it a part of EMD's maintenance program.

Endoscopy medical procedure

An endoscopy is used in medicine to look inside the body. The endoscopy procedure uses an endoscope to examine the interior of a hollow organ or cavity of the body. Unlike many other medical imaging techniques, endoscopes are inserted directly into the organ.

Borescope

A borescope is an optical device consisting of a rigid or flexible tube with an eyepiece or display on one end, an objective lens or camera on the other linked together by an optical or electrical system in between. The optical system in some instances is surrounded by optical fibers used for illumination of the remote object. An internal image of the illuminated object is formed by the objective lens and magnified by the eyepiece which presents it to the viewer's eye.

The engine airbox covers (the upper covers observed on the side of an EMD engine - they cover the "airbox" that allows air to flow through the cylinder block to the power assemblies) are removed to allow visual inspection of the inside of the cylinder liners and the piston crowns, skirts and rings. The crankcase access covers (the lower covers observed on the side of an EMD engine) are also removed to inspect for coolant leakage, damaged components and excessive wear. A proper inspection requires filling and pressurizing the cooling system to check for leakage from the power assemblies.

To inspect the engine, it can be manually "barred over" with a lever, but manual engine rotation is slow and inefficient. In some applications manually barring the engine over can be difficult or impossible. The preferred tool for engine rotation is an electrically powered, hydraulically operated "turning jack". The turning jack uses a hydraulic cylinder and ram assembly that automatically advances to engage a hole in the flywheel. When the ram reaches its limit, it automatically retracts and advances again to engage another hole. The engine is then progressively rotated through its cycle and can be rotated in either direction by installing the jack on either side of the engine. Not only is a turning jack faster and more efficient, it is also safer since there is no risk of a barring lever coming loose and causing injury or damage. Also, with a turning jack, there is no need for the mechanic to be in physical contact with the engine at any point during the inspection process.

A turning jack also allows a complete top deck and crankcase inspection to be performed by one mechanic in minutes, and inspecting the engine with the components in motion produces a better inspection. Rocker arm rollers can be inspected for proper rotation, potential valvetrain problems such as insufficient or excessive clearance can be observed, piston ring movement in the ring grooves indicating excessive groove wear can be observed, broken valvesprings can be more easily seen, and so on. A turning jack also allows the mechanic to observe the flywheel timing marks while the engine is rotating to time the engine properly for maintenance or post-repair engine valve-train and fuel-system adjustments.

Claims of power assembly replacement being possible with "ordinary tools" in a "few hours" are subjective, as the tools necessary are hardly "ordinary" in typical mechanic shops and actual repair times can vary widely depending on the situation. At the minimum, large sockets and high-capacity torque multipliers are necessary to enable the large nuts retaining the hold-downs to be removed and retorqued to proper specifications. Various other special tools, while not strictly required, make the job much easier. Additionally, there are special tools required for adjustment of the fuel system after assembly replacement.

As far as repair time goes, power assembly replacement is typically performed by at least two mechanics so the labor involved is at least twice the repair time required. If the engine comes in for inspection or repair "hot", the unit may need to cool for several hours before repairs can begin. If parts are not readily available, the delays will increase. Typically, for a power assembly replacement in an engine cool enough to work on and with the proper tools and necessary parts readily at hand, two mechanics can replace a power assembly properly and safely in a 4-hour period. Rarely are major repairs involving expensive engines and components and significant safety hazards rushed to create "efficiency" at the expense of safety and reliability.

The quality and layout of the work area also has a big effect on the time required and the quality of the work. Proper equipment and tools make the job "easy". Poor working conditions and having to make do without the appropriate tools and equipment can make the replacement process a nightmare. The aforementioned "barring over" with a lever versus having a turning jack is a good example of being properly equipped. A properly equipped repair shop for mobile equipment (locomotives) or individual engines (rebuild/overhaul shop) or the area where stationary engines are permanently installed (marine applications where the engine cannot be practically removed for service or electrical power plants, etc.) will be equipped with sufficient overhead lifting equipment to allow the assemblies to be safely and efficiently handled, removed and installed.

Although the components are large and heavy and specialized tools are required, the replacement process is straightforward and simple. The engine coolant is drained, the rocker arm assembly and fuel system components are removed, the connecting rod is disconnected from the crankshaft, the power assembly hold-downs (commonly called "crabs") are removed, the cooling system plumbing is disconnected, the lifting fixture is installed and the power assembly is lifted out of the cylinder block. The process is reversed to install the replacement power assembly.

Following installation of the replacement assembly, all hardware is torqued to specs, the cooling system is refilled, the engine crankshaft is properly timed to allow the valves and fuel injector of the new power assembly to be adjusted, the valve train and fuel injection system is adjusted using appropriate gauges, the fuel system is primed and the engine is started and checked for proper operation and leaks within the cooling system, if any, are identified. As in any other situation where an engine is rebuilt, there is a "break-in" period for replacement power assemblies that should include operating the engine at varying speeds and loads for a specified period of time to seat the cylinder rings before the engine is placed into normal service.

Related Research Articles

Crankshaft

A crankshaft—related to crank—is a mechanical part able to perform a conversion between reciprocating motion and rotational motion. In a reciprocating engine, it translates reciprocating motion of the piston into rotational motion; whereas in a reciprocating compressor, it converts the rotational motion into reciprocating motion. In order to do the conversion between two motions, the crankshaft has "crank throws" or "crankpins", additional bearing surfaces whose axis is offset from that of the crank, to which the "big ends" of the connecting rods from each cylinder attach.

Watt steam engine

The Watt steam engine, alternatively known as the Boulton and Watt steam engine, was the first practical steam engine and was one of the driving forces of the industrial revolution. James Watt developed the design sporadically from 1763 to 1775 with support from Matthew Boulton. Watt's design saved significantly more fuel compared to earlier designs that they were licensed based on the amount of fuel they would save. Watt never ceased developing the steam engine, introducing double-acting designs and various systems for taking off rotary power. Watt's design became synonymous with steam engines, and it was many years before significantly new designs began to replace the basic Watt design.

Four-stroke engine

A four-stroke engine is an internal combustion (IC) engine in which the piston completes four separate strokes while turning the crankshaft. A stroke refers to the full travel of the piston along the cylinder, in either direction. The four separate strokes are termed:

  1. Intake: Also known as induction or suction. This stroke of the piston begins at top dead center (T.D.C.) and ends at bottom dead center (B.D.C.). In this stroke the intake valve must be in the open position while the piston pulls an air-fuel mixture into the cylinder by producing vacuum pressure into the cylinder through its downward motion. The piston is moving down as air is being sucked in by the downward motion against the piston.
  2. Compression: This stroke begins at B.D.C, or just at the end of the suction stroke, and ends at T.D.C. In this stroke the piston compresses the air-fuel mixture in preparation for ignition during the power stroke (below). Both the intake and exhaust valves are closed during this stage.
  3. Combustion: Also known as power or ignition. This is the start of the second revolution of the four stroke cycle. At this point the crankshaft has completed a full 360 degree revolution. While the piston is at T.D.C. the compressed air-fuel mixture is ignited by a spark plug or by heat generated by high compression, forcefully returning the piston to B.D.C. This stroke produces mechanical work from the engine to turn the crankshaft.
  4. Exhaust: Also known as outlet. During the exhaust stroke, the piston, once again, returns from B.D.C. to T.D.C. while the exhaust valve is open. This action expels the spent air-fuel mixture through the exhaust valve.
Cylinder head Component of a cylinder of an internal combustion engine

In an internal combustion engine, the cylinder head sits above the cylinders on top of the cylinder block. It closes in the top of the cylinder, forming the combustion chamber. This joint is sealed by a head gasket. In most engines, the head also provides space for the passages that feed air and fuel to the cylinder, and that allow the exhaust to escape. The head can also be a place to mount the valves, spark plugs, and fuel injectors.

Engine tuning the adjustment, modification, or design of internal combustion engines to yield more performance

Engine tuning is the adjustment or modification of the internal combustion engine or Engine Control Unit (ECU) to yield optimal performance and increase the engine's power output, economy, or durability. These goals may be mutually exclusive; an engine may be de-tuned with respect to output power in exchange for better economy or longer engine life due to lessened stress on engine components.

Pre-ignition in a spark-ignition engine is a technically different phenomenon from engine knocking, and describes the event wherein the air/fuel mixture in the cylinder ignites before the spark plug fires. Pre-ignition is initiated by an ignition source other than the spark, such as hot spots in the combustion chamber, a spark plug that runs too hot for the application, or carbonaceous deposits in the combustion chamber heated to incandescence by previous engine combustion events.

Cylinder (engine) central working part of a reciprocating engine or pump, the space in which a piston travels, often equipped with a cylinder liner

A cylinder is the central working part of a reciprocating engine or pump, the space in which a piston travels. Multiple cylinders are commonly arranged side by side in a bank, or engine block, which is typically cast from aluminum or cast iron before receiving precision machine work. Cylinders may be sleeved or sleeveless. A sleeveless engine may also be referred to as a "parent-bore engine".

Ford Power Stroke engine

Power Stroke is a name used by a family of diesel engines for trucks produced by Ford Motor Company since 1994. Along with its use in the Ford F-Series, applications include the Ford E-Series, Ford Excursion, and Ford LCF commercial truck; the name was also used for a diesel engine used in South American production of the Ford Ranger.

Steam locomotive components

This is a glossary of the components found on typical steam locomotives.

Saturn I4 engine

The powerplant used in Saturn S-series automobiles was a straight-4 aluminum piston engine produced by Saturn, a subsidiary of General Motors. The engine was only used in the Saturn S-series line of vehicles from 1991 through 2002. It was available in chain-driven SOHC or DOHC variants.

EMD 645 two-stroke diesel engine of  645 cu.in. per cylinder

The EMD 645 family of diesel engines was designed and manufactured by the Electro-Motive Division of General Motors. While the 645 series was intended primarily for locomotive, marine and stationary engine use, one 16-cylinder version powered the 33-19 "Titan" prototype haul truck designed by GM's Terex division.

Rolls-Royce Eagle (1944) H-24 piston aircraft engine

The Rolls-Royce Eagle Mk XXII was a British 24-cylinder, sleeve valve, H-block aero engine of 46 litre displacement. It was designed and built in the early-1940s by Rolls-Royce Limited and first ran in 1944. It was liquid-cooled, of flat H configuration with two crankshafts and was capable of 3,200 horsepower at 18 psi boost.

Hydrolock

Hydrolock is an abnormal condition of any device which is designed to compress a gas by mechanically restraining it; most commonly the reciprocating internal combustion engine, the case this article refers to unless otherwise noted. Hydrolock occurs when a volume of liquid greater than the volume of the cylinder at its minimum enters the cylinder. Since liquids are nearly incompressible the piston cannot complete its travel; either the engine must stop rotating or a mechanical failure must occur.

Hydraulic cylinder

A hydraulic cylinder is a mechanical actuator that is used to give a unidirectional force through a unidirectional stroke. It has many applications, notably in construction equipment, manufacturing machinery, and civil engineering.

EMD 567 two-stroke diesel engine of 567 cu.in. per cylinder

The EMD 567 is a line of large medium-speed diesel engines built by General Motors' Electro-Motive Division. This engine, which succeeded Winton's 201A, was used in EMD's locomotives from 1938 until its replacement in 1966 by the EMD 645. It has a bore of 8 12 in (216 mm), a stroke of 10 in (254 mm) and a displacement of 567 cu in (9.29 L) per cylinder. Like the 201A, the EMD 645 and the EMD 710, the EMD 567 is a two-stroke engine.

Wax thermostatic element

The wax thermostatic element was invented in 1934 by Sergius Vernet (1899–1968). Its principal application is in automotive thermostats used in the engine cooling system. The first applications in the plumbing and heating industries were in Sweden (1970) and in Switzerland (1971).

Revolving cylinder engine

The primary claimed benefit of the revolving cylinder, axial piston engine is that a four-cycle, reciprocating piston engine can be achieved without the need for a complex and expensive valve train. The intake and exhaust flows are controlled by simple ports in the cylinder heads. Costs are further reduced because all cylinders at each end of the engine share a common fuel injector and/or spark plug. Additionally, the designs are typically compact and lightweight.

Internal combustion engines come in a wide variety of types, but have certain family resemblances, and thus share many common types of components.

Internal combustion engine engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber

An internal combustion engine (ICE) is a heat engine where the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is applied typically to pistons, turbine blades, rotor or a nozzle. This force moves the component over a distance, transforming chemical energy into useful mechanical energy.