Price of stability

Last updated

In game theory, the price of stability (PoS) of a game is the ratio between the best objective function value of one of its equilibria and that of an optimal outcome. The PoS is relevant for games in which there is some objective authority that can influence the players a bit, and maybe help them converge to a good Nash equilibrium. When measuring how efficient a Nash equilibrium is in a specific game we often also talk about the price of anarchy (PoA), which is the ratio between the worst objective function value of one of its equilibria and that of an optimal outcome.

Contents

Examples

Another way of expressing PoS is:

In particular, if the optimal solution is a Nash equilibrium, then the PoS is 1.

In the following prisoner’s dilemma game, since there is a single equilibrium we have PoS = PoA = 1/2.

Prisoner's Dilemma
LeftRight
Top(2,2)(0,3)
Bottom(3,0)(1,1)

On this example which is a version of the battle of sexes game, there are two equilibrium points, and , with values 3 and 15, respectively. The optimal value is 15. Thus, PoS = 1 while PoA = 1/5.

LeftRight
Top(2,1)(0,0)
Bottom(0,0)(5,10)

Background and milestones

The price of stability was first studied by A. Schulz and N. Stier-Moses while the term was coined by E. Anshelevich et al. Schulz and Stier-Moses focused on equilibria in a selfish routing game in which edges have capacities. Anshelevich et al. studied network design games and showed that a pure strategy Nash equilibrium always exists and the price of stability of this game is at most the nth harmonic number in directed graphs. For undirected graphs Anshelevich and others presented a tight bound on the price of stability of 4/3 for a single source and two players case. Jian Li has proved that for undirected graphs with a distinguished destination to which all players must connect the price of stability of the Shapely network design game is where is the number of players. On the other hand, the price of anarchy is about in this game.

Network design games

Setup

Network design games have a very natural motivation for the Price of Stability. In these games, the Price of Anarchy can be much worse than the Price of Stability.

Consider the following game.

A network design game with
O
(
n
)
{\displaystyle \Omega (n)}
Price of Anarchy Network-design-poa.svg
A network design game with Price of Anarchy

Price of anarchy

The price of anarchy can be . Consider the following network design game.

Pathological Price of Stability game Network-design-pos.svg
Pathological Price of Stability game

Consider two different equilibria in this game. If everyone shares the edge, the social cost is . This equilibrium is indeed optimal. Note, however, that everyone sharing the edge is a Nash equilibrium as well. Each agent has cost at equilibrium, and switching to the other edge raises his cost to .

Lower bound on price of stability

Here is a pathological game in the same spirit for the Price of Stability, instead. Consider players, each originating from and trying to connect to . The cost of unlabeled edges is taken to be 0.

The optimal strategy is for everyone to share the edge, yielding total social cost . However, there is a unique Nash for this game. Note that when at the optimum, each player is paying , and player 1 can decrease his cost by switching to the edge. Once this has happened, it will be in player 2's interest to switch to the edge, and so on. Eventually, the agents will reach the Nash equilibrium of paying for their own edge. This allocation has social cost , where is the th harmonic number, which is . Even though it is unbounded, the price of stability is exponentially better than the price of anarchy in this game.

Upper bound on price of stability

Note that by design, network design games are congestion games. Therefore, they admit a potential function .

Theorem. [Theorem 19.13 from Reference 1] Suppose there exist constants and such that for every strategy ,

Then the price of stability is less than

Proof. The global minimum of is a Nash equilibrium, so

Now recall that the social cost was defined as the sum of costs over edges, so

We trivially have , and the computation above gives , so we may invoke the theorem for an upper bound on the price of stability.

See also

Related Research Articles

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical physics, the Dirac delta distribution, also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.

In probability theory, the central limit theorem (CLT) establishes that, in many situations, for independent and identically distributed random variables, the sampling distribution of the standardized sample mean tends towards the standard normal distribution even if the original variables themselves are not normally distributed.

<span class="mw-page-title-main">Wiener process</span> Stochastic process generalizing Brownian motion

In mathematics, the Wiener process is a real-valued continuous-time stochastic process named in honor of American mathematician Norbert Wiener for his investigations on the mathematical properties of the one-dimensional Brownian motion. It is often also called Brownian motion due to its historical connection with the physical process of the same name originally observed by Scottish botanist Robert Brown. It is one of the best known Lévy processes and occurs frequently in pure and applied mathematics, economics, quantitative finance, evolutionary biology, and physics.

In probability theory, Markov's inequality gives an upper bound for the probability that a non-negative function of a random variable is greater than or equal to some positive constant. It is named after the Russian mathematician Andrey Markov, although it appeared earlier in the work of Pafnuty Chebyshev, and many sources, especially in analysis, refer to it as Chebyshev's inequality or Bienaymé's inequality.

<span class="mw-page-title-main">Electrostatics</span> Study of stationary electric charge

Electrostatics is a branch of physics that studies electric charges at rest.

In mathematics, the Fourier inversion theorem says that for many types of functions it is possible to recover a function from its Fourier transform. Intuitively it may be viewed as the statement that if we know all frequency and phase information about a wave then we may reconstruct the original wave precisely.

In probability theory, a Chernoff bound is an exponentially decreasing upper bound on the tail of a random variable based on its moment generating function. The minimum of all such exponential bounds forms the Chernoff or Chernoff-Cramér bound, which may decay faster than exponential. It is especially useful for sums of independent random variables, such as sums of Bernoulli random variables.

In mathematics, more specifically in mathematical analysis, the Cauchy product is the discrete convolution of two infinite series. It is named after the French mathematician Augustin-Louis Cauchy.

In probability theory, Hoeffding's inequality provides an upper bound on the probability that the sum of bounded independent random variables deviates from its expected value by more than a certain amount. Hoeffding's inequality was proven by Wassily Hoeffding in 1963.

In information theory, Shannon's source coding theorem establishes the limits to possible data compression, and the operational meaning of the Shannon entropy.

In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence defines a series S that is denoted

<span class="mw-page-title-main">Arc length</span> Distance along a curve

Arc length is the distance between two points along a section of a curve.

<span class="mw-page-title-main">Debye–Hückel equation</span> Electrochemical equation

The chemists Peter Debye and Erich Hückel noticed that solutions that contain ionic solutes do not behave ideally even at very low concentrations. So, while the concentration of the solutes is fundamental to the calculation of the dynamics of a solution, they theorized that an extra factor that they termed gamma is necessary to the calculation of the activities of the solution. Hence they developed the Debye–Hückel equation and Debye–Hückel limiting law. The activity is only proportional to the concentration and is altered by a factor known as the activity coefficient . This factor takes into account the interaction energy of ions in solution.

In mathematics and economics, transportation theory or transport theory is a name given to the study of optimal transportation and allocation of resources. The problem was formalized by the French mathematician Gaspard Monge in 1781.

Equilibrium constants are determined in order to quantify chemical equilibria. When an equilibrium constant K is expressed as a concentration quotient,

The Price of Anarchy (PoA) is a concept in economics and game theory that measures how the efficiency of a system degrades due to selfish behavior of its agents. It is a general notion that can be extended to diverse systems and notions of efficiency. For example, consider the system of transportation of a city and many agents trying to go from some initial location to a destination. Let efficiency in this case mean the average time for an agent to reach the destination. In the 'centralized' solution, a central authority can tell each agent which path to take in order to minimize the average travel time. In the 'decentralized' version, each agent chooses its own path. The Price of Anarchy measures the ratio between average travel time in the two cases.

Congestion games are a class of games in game theory first proposed by American economist Robert W. Rosenthal in 1973. In a congestion game the payoff of each player depends on the resources it chooses and the number of players choosing the same resource. Congestion games are a special case of potential games. Rosenthal proved that any congestion game is a potential game and Monderer and Shapley (1996) proved the converse: for any potential game, there is a congestion game with the same potential function.

In probability theory, concentration inequalities provide bounds on how a random variable deviates from some value. The law of large numbers of classical probability theory states that sums of independent random variables are, under very mild conditions, close to their expectation with a large probability. Such sums are the most basic examples of random variables concentrated around their mean. Recent results show that such behavior is shared by other functions of independent random variables.

In mathematics, a smooth maximum of an indexed family x1, ..., xn of numbers is a smooth approximation to the maximum function meaning a parametric family of functions such that for every α, the function is smooth, and the family converges to the maximum function as . The concept of smooth minimum is similarly defined. In many cases, a single family approximates both: maximum as the parameter goes to positive infinity, minimum as the parameter goes to negative infinity; in symbols, as and as . The term can also be used loosely for a specific smooth function that behaves similarly to a maximum, without necessarily being part of a parametrized family.

<span class="mw-page-title-main">Price of anarchy in auctions</span>

The Price of Anarchy (PoA) is a concept in game theory and mechanism design that measures how the social welfare of a system degrades due to selfish behavior of its agents. It has been studied extensively in various contexts, particularly in auctions.

References

  1. A.S. Schulz, N.E. Stier-Moses. On the performance of user equilibria in traffic networks. Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2003.
  2. E. Anshelevich, E. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, T. Roughgarden. The Price of Stability for Network Design with Fair Cost Allocation. SIAM Journal on Computing, 38:4, 1602-1623, 2008. Conference version appeared in FOCS 2004.
  3. Vazirani, Vijay V.; Nisan, Noam; Roughgarden, Tim; Tardos, Éva (2007). Algorithmic Game Theory (PDF). Cambridge, UK: Cambridge University Press. ISBN   0-521-87282-0.
  4. L. Agussurja and H. C. Lau. The Price of Stability in Selfish Scheduling Games. Web Intelligence and Agent Systems: An International Journal, 9:4, 2009.
  5. Jian Li. An upper bound on the price of stability for undirected Shapely network design games. Information Processing Letters 109 (15), 876-878, 2009.