In mathematics, a principal subalgebra of a complex simple Lie algebra is a 3-dimensional simple subalgebra whose non-zero elements are regular.
A finite-dimensional complex simple Lie algebra has a unique conjugacy class of principal subalgebras, each of which is the span of an sl2-triple.
In mathematics, hypercomplex number is a traditional term for an element of a finite-dimensional unital algebra over the field of real numbers. The study of hypercomplex numbers in the late 19th century forms the basis of modern group representation theory.
In mathematics, E6 is the name of some closely related Lie groups, linear algebraic groups or their Lie algebras , all of which have dimension 78; the same notation E6 is used for the corresponding root lattice, which has rank 6. The designation E6 comes from the Cartan–Killing classification of the complex simple Lie algebras (see Élie Cartan § Work). This classifies Lie algebras into four infinite series labeled An, Bn, Cn, Dn, and five exceptional cases labeled E6, E7, E8, F4, and G2. The E6 algebra is thus one of the five exceptional cases.
In mathematics, a Lie superalgebra is a generalisation of a Lie algebra to include a Z2‑grading. Lie superalgebras are important in theoretical physics where they are used to describe the mathematics of supersymmetry. In most of these theories, the even elements of the superalgebra correspond to bosons and odd elements to fermions.
In mathematics, E8 is any of several closely related exceptional simple Lie groups, linear algebraic groups or Lie algebras of dimension 248; the same notation is used for the corresponding root lattice, which has rank 8. The designation E8 comes from the Cartan–Killing classification of the complex simple Lie algebras, which fall into four infinite series labeled An, Bn, Cn, Dn, and five exceptional cases labeled G2, F4, E6, E7, and E8. The E8 algebra is the largest and most complicated of these exceptional cases.
In abstract algebra, a Jordan algebra is a nonassociative algebra over a field whose multiplication satisfies the following axioms:
In mathematics, a Cartan subalgebra, often abbreviated as CSA, is a nilpotent subalgebra of a Lie algebra that is self-normalising. They were introduced by Élie Cartan in his doctoral thesis. It controls the representation theory of a semi-simple Lie algebra over a field of characteristic .
In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras.
In mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. Given an affine Lie algebra, one can also form the associated affine Kac-Moody algebra, as described below. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite-dimensional semisimple Lie algebras, is much better understood than that of general Kac–Moody algebras. As observed by Victor Kac, the character formula for representations of affine Lie algebras implies certain combinatorial identities, the Macdonald identities.
In mathematics, a Lie algebra is nilpotent if its lower central series terminates in the zero subalgebra. The lower central series is the sequence of subalgebras
In ring theory, a branch of mathematics, a semisimple algebra is an associative artinian algebra over a field which has trivial Jacobson radical. If the algebra is finite-dimensional this is equivalent to saying that it can be expressed as a Cartesian product of simple subalgebras.
A non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × A → A which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation. Since it is not assumed that the multiplication is associative, using parentheses to indicate the order of multiplications is necessary. For example, the expressions (ab)(cd), (a(bc))d and a(b(cd)) may all yield different answers.
In the theory of Lie algebras, an sl2-triple is a triple of elements of a Lie algebra that satisfy the commutation relations between the standard generators of the special linear Lie algebra sl2. This notion plays an important role in the theory of semisimple Lie algebras, especially in regard to their nilpotent orbits.
In mathematics, the Chevalley–Shephard–Todd theorem in invariant theory of finite groups states that the ring of invariants of a finite group acting on a complex vector space is a polynomial ring if and only if the group is generated by pseudoreflections. In the case of subgroups of the complex general linear group the theorem was first proved by G. C. Shephard and J. A. Todd who gave a case-by-case proof. Claude Chevalley soon afterwards gave a uniform proof. It has been extended to finite linear groups over an arbitrary field in the non-modular case by Jean-Pierre Serre.
In theoretical physics, a supersymmetry algebra is a mathematical formalism for describing the relation between bosons and fermions. The supersymmetry algebra contains not only the Poincaré algebra and a compact subalgebra of internal symmetries, but also contains some fermionic supercharges, transforming as a sum of N real spinor representations of the Poincaré group. Such symmetries are allowed by the Haag–Łopuszański–Sohnius theorem. When N>1 the algebra is said to have extended supersymmetry. The supersymmetry algebra is a semidirect sum of a central extension of the super-Poincaré algebra by a compact Lie algebra B of internal symmetries.
In mathematics, a toral subalgebra is a Lie subalgebra of a general linear Lie algebra all of whose elements are semisimple. Equivalently, a Lie algebra is toral if it contains no nonzero nilpotent elements. Over an algebraically closed field, every toral Lie algebra is abelian; thus, its elements are simultaneously diagonalizable.
In the mathematical field of Lie theory, a split Lie algebra is a pair where is a Lie algebra and is a splitting Cartan subalgebra, where "splitting" means that for all , is triangularizable. If a Lie algebra admits a splitting, it is called a splittable Lie algebra. Note that for reductive Lie algebras, the Cartan subalgebra is required to contain the center.
In mathematics, a regular element of a Lie algebra or Lie group is an element whose centralizer has dimension as small as possible. For example, in a complex semisimple Lie algebra, an element is regular if its centralizer in has dimension equal to the rank of , which in turn equals the dimension of some Cartan subalgebra . An element a Lie group is regular if its centralizer has dimension equal to the rank of .
In mathematics, the Springer resolution is a resolution of the variety of nilpotent elements in a semisimple Lie algebra, or the unipotent elements of a reductive algebraic group, introduced by Tonny Albert Springer in 1969. The fibers of this resolution are called Springer fibers.
In mathematics, a Siegel domain or Piatetski-Shapiro domain is a special open subset of complex affine space generalizing the Siegel upper half plane studied by Siegel. They were introduced by Piatetski-Shapiro in his study of bounded homogeneous domains.
In mathematics, the representation theory of semisimple Lie algebras is one of the crowning achievements of the theory of Lie groups and Lie algebras. The theory was worked out mainly by E. Cartan and H. Weyl and because of that, the theory is also known as the Cartan–Weyl theory. The theory gives the structural description and classification of a finite-dimensional representation of a semisimple Lie algebra ; in particular, it gives a way to parametrize irreducible finite-dimensional representations of a semisimple Lie algebra, the result known as the theorem of the highest weight.