Pumping (oil well)

Last updated

In the context of oil wells, pumping is a routine operation involving injecting fluids into the well. Pumping may either be done by rigging up to the kill wing valve on the Xmas tree or, if an intervention rig up is present pumping into the riser through a T-piece (a small section of riser with a connection on the side). Pumping is most routinely done to protect the well against scale and hydrates through the pumping of scale inhibitors and methanol. Pumping of kill weight brine may be done for the purposes of well kills and more exotic chemicals may be pumped from surface for cleaning the lower completion or stimulating the reservoir (though these types are jobs are more frequently done with coiled tubing for extra precision).

Oil well boring in the Earth that is designed to bring petroleum oil hydrocarbons to the surface

An oil well is a boring in the Earth that is designed to bring petroleum oil hydrocarbons to the surface. Usually some natural gas is released along with the oil. A well that is designed to produce only gas may be termed a gas well.

Christmas tree (oil well) An assembly of valves, spools, and fittings used to regulate the flow of pipes in an oil well

In petroleum and natural gas extraction, a Christmas tree, or "tree", is an assembly of valves, spools, and fittings used to regulate the flow of pipes in an oil well, gas well, water injection well, water disposal well, gas injection well, condensate well and other types of wells. It was named for its resemblance to the series of starting lights at a drag racing strip.

A well kill is the operation of placing a column of heavy fluid into a well bore in order to prevent the flow of reservoir fluids without the need for pressure control equipment at the surface. It works on the principle that the hydrostatic head of the "kill fluid" or "kill mud" will be enough to suppress the pressure of the formation fluids. Well kills may be planned in the case of advanced interventions such as workovers, or be contingency operations. The situation calling for a well kill will dictate the method taken.

Importance of knowing quantity

Work involving wells is fraught with difficulties as there is often very little information about the real time condition of the completion. This lack of knowledge also covers potential damage and even loss of well integrity. Therefore, it is essential for the operator to pay attention to the pressures as recorded and to the quantity pumped. A premature increase in pressure is sign of a potential blockage and continuing to pump risks burst pressure retaining components. Pumping more than an anticipated amount of fluid is a sign of a loss of integrity and a potential leak path somewhere. In either of these two situations, pumping must be stopped and the potential causes analysed.

Well integrity, in regard to oil wells, is defined by NORSOK D-010 as the "“Application of technical, operational and organizational solutions to reduce risk of uncontrolled release of formation fluids throughout the life cycle of a well”. There are various facets to well integrity, including accountability/responsibility, well operating processes, well service processes, tubing/annulus integrity, tree/wellhead integrity and testing of safety systems.

Compressed volumes

It is vital to know the effective capacity of the completion being filled in order to understand what are sensible volumes. If pumping is to continue until reaching a desired pressurisation, then the compressibility of the fluid will become significant. It is therefore important to know how much the fluid will compress under pressure to know how much extra fluid is expected to be required.

As a rule of thumb in the oilfield, compression is governed by the equation:
where ΔV is the change in volume, P is the pressure at surface and V is the volume of fluid unpressurised. k is a compression factor approximately 3.5×10−6 psi−1.

For example, a volume of 300 bbl is to be filled with brine and pressurised to 3000 psi at the surface. The compression is


Therefore, it is expected that 303.15 bbl are required to accomplish this task. If 3000 psi is achieved prior to this quantity being pumped, a blockage is to be suspected. If after pumping 303 bbl, pressurisation is not achieved, a leak is to be suspected.

Related Research Articles

Adiabatic process thermodynamic process

An adiabatic process occurs without transfer of heat or mass of substances between a thermodynamic system and its surroundings. In an adiabatic process, energy is transferred to the surroundings only as work. The adiabatic process provides a rigorous conceptual basis for the theory used to expound the first law of thermodynamics, and as such it is a key concept in thermodynamics.

Enthalpy measurement of energy in a thermodynamic system; thermodynamic quantity equivalent to the total heat content of a system

Enthalpy, a property of a thermodynamic system, is equal to the system's internal energy plus the product of its pressure and volume. In a system enclosed so as to prevent matter transfer, for processes at constant pressure, the heat absorbed or released equals the change in enthalpy.

Pressure Force distributed continuously over an area

Pressure is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure is the pressure relative to the ambient pressure.

Potential flow

In fluid dynamics, potential flow describes the velocity field as the gradient of a scalar function: the velocity potential. As a result, a potential flow is characterized by an irrotational velocity field, which is a valid approximation for several applications. The irrotationality of a potential flow is due to the curl of the gradient of a scalar always being equal to zero.

Stream function The stream function is constant along a streamline

The stream function is defined for incompressible (divergence-free) flows in two dimensions – as well as in three dimensions with axisymmetry. The flow velocity components can be expressed as the derivatives of the scalar stream function. The stream function can be used to plot streamlines, which represent the trajectories of particles in a steady flow. The two-dimensional Lagrange stream function was introduced by Joseph Louis Lagrange in 1781. The Stokes stream function is for axisymmetrical three-dimensional flow, and is named after George Gabriel Stokes.

In physics and fluid mechanics, a boundary layer is an important concept and refers to the layer of fluid in the immediate vicinity of a bounding surface where the effects of viscosity are significant.

Hemodynamics or hæmodynamics is the dynamics of blood flow. The circulatory system is controlled by homeostatic mechanisms, such as hydraulic circuits are controlled by control systems. Hemodynamic response continuously monitors and adjusts to conditions in the body and its environment. Thus hemodynamics explains the physical laws that govern the flow of blood in the blood vessels.

Isobaric process thermodynamic process

An isobaric process is a thermodynamic process in which the pressure stays constant: ΔP = 0. The heat transferred to the system does work, but also changes the internal energy of the system. This article uses the chemistry sign convention for work, where positive work is work done on the system. Using this convention, by the first law of thermodynamics,

Scalar potential concept in vector analysis and physics

Scalar potential, simply stated, describes the situation where the difference in the potential energies of an object in two different positions depends only on the positions, not upon the path taken by the object in traveling from one position to the other. It is a scalar field in three-space: a directionless value (scalar) that depends only on its location. A familiar example is potential energy due to gravity.

Compressor Mechanical device that increases the pressure of a gas by reducing its volume

A compressor is a mechanical device that increases the pressure of a gas by reducing its volume. An air compressor is a specific type of gas compressor.

Chemiosmosis

Chemiosmosis is the movement of ions across a semipermeable membrane, down their electrochemical gradient. An example of this would be the generation of adenosine triphosphate (ATP) by the movement of hydrogen ions (H+) across a membrane during cellular respiration or photosynthesis.

In physics, Washburn's equation describes capillary flow in a bundle of parallel cylindrical tubes; it is extended with some issues also to imbibition into porous materials. The equation is named after Edward Wight Washburn; also known as Lucas–Washburn equation, considering that Richard Lucas wrote a similar paper three years earlier, or the Bell-Cameron-Lucas-Washburn equation, considering J.M. Bell and F.K. Cameron's discovery of the form of the equation in 1906.

Hydraulic head Specific measurement of liquid pressure above a geodetic datum

Hydraulic head or piezometric head is a specific measurement of liquid pressure above a vertical datum.

Conjugate variables (thermodynamics)

In thermodynamics, the internal energy of a system is expressed in terms of pairs of conjugate variables such as temperature and entropy or pressure and volume. In fact, all thermodynamic potentials are expressed in terms of conjugate pairs. The product of two quantities that are conjugate has units of energy or sometimes power.

Thermodynamic cycle linked sequence of thermodynamic processes that involve transfer of heat and work into and out of the system,while varying pressure, temperature, and other state variables within the system, and that eventually returns the system to its initial state

A thermodynamic cycle consists of a linked sequence of thermodynamic processes that involve transfer of heat and work into and out of the system, while varying pressure, temperature, and other state variables within the system, and that eventually returns the system to its initial state. In the process of passing through a cycle, the working fluid (system) may convert heat from a warm source into useful work, and dispose of the remaining heat to a cold sink, thereby acting as a heat engine. Conversely, the cycle may be reversed and use work to move heat from a cold source and transfer it to a warm sink thereby acting as a heat pump. At every point in the cycle, the system is in thermodynamic equilibrium, so the cycle is reversible.

Polytropic process

A polytropic process is a thermodynamic process that obeys the relation:

Oil well control is the management of the dangerous effects caused by the unexpected release of formation fluid, such as natural gas and/or crude oil, upon surface equipment of oil or gas drilling rigs and escaping into the atmosphere. Technically, oil well control involves preventing the formation fluid, usually referred to as kick, from entering into the wellbore during drilling.

Flotation of flexible objects is a phenomenon in which the bending of a flexible material allows an object to displace a greater amount of fluid than if it were completely rigid. This ability to displace more fluid translates directly into an ability to support greater loads, giving the flexible structure an advantage over a similarly rigid one. Inspiration to study the effects of elasticity are taken from nature, where plants and animals living at the water surface have evolved to take advantage of the load-bearing benefits elasticity imparts.

Rossby wave instability in astrophysical discs

Rossby Wave Instability (RWI) is a concept related to astrophysical discs. In non-self-gravitating discs, for example around newly forming stars, the instability can be triggered by an axisymmetric bump, at some radius , in the disc surface mass-density. It gives rise to exponentially growing non-axisymmetric perturbation [ , ] in the vicinity of consisting of anticyclonic vortices. These vortices are regions of high pressure and consequently act to trap dust particles which in turn can facilitate planetesimal growth in proto-planetary discs. The Rossby vortices in the discs around stars and black holes may cause the observed quasi-periodic modulations of the disc's thermal emission.

Specific Pump Power (SPP) or Pumpkin Power (PP) is a metric in fluid dynamics that quantifies the energy-efficiency of pump systems. It is a measure of the electric power that is needed to operate a pump, relative to the volume flow rate. It is not constant for a given pump, but changes with both flow rate and pump pressure. This term 'SPP' is adapted from the established metric Specific fan power (SFP) for fans (blowers). It is commonly used when measuring the energy efficiency of buildings.