Purity (algebraic geometry)

Last updated

In the mathematical field of algebraic geometry, purity is a theme covering a number of results and conjectures, which collectively address the question of proving that "when something happens, it happens in a particular codimension".

Algebraic geometry Branch of mathematics

Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros.

In mathematics, codimension is a basic geometric idea that applies to subspaces in vector spaces, to submanifolds in manifolds, and suitable subsets of algebraic varieties.

For example, ramification is a phenomenon of codimension 1 (in the geometry of complex manifolds, reflecting as for Riemann surfaces that ramify at single points that it happens in real codimension two). A classical result, ZariskiNagata purity of Masayoshi Nagata and Oscar Zariski, [1] [2] called also purity of the branch locus, proves that on a non-singular algebraic variety a branch locus, namely the set of points at which a morphism ramifies, must be made up purely of codimension 1 subvarieties (a Weil divisor). There have been numerous extensions of this result into theorems of commutative algebra and scheme theory, establishing purity of the branch locus in the sense of description of the restrictions on the possible "open subsets of failure" to be an étale morphism.

Ramification (mathematics)

In geometry, ramification is 'branching out', in the way that the square root function, for complex numbers, can be seen to have two branches differing in sign. The term is also used from the opposite perspective as when a covering map degenerates at a point of a space, with some collapsing of the fibers of the mapping.

In differential geometry, a complex manifold is a manifold with an atlas of charts to the open unit disk in Cn, such that the transition maps are holomorphic.

Riemann surface one-dimensional complex manifold

In mathematics, particularly in complex analysis, a Riemann surface is a one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together.

There is also a homological notion of purity that is related, namely a collection of results stating that cohomology groups from a particular theory are trivial with the possible exception of one index i. Such results were established in étale cohomology by Michael Artin (included in SGA 4), and were foundational in setting up the theory to contain expected analogues of results from singular cohomology. A general statement of Alexander Grothendieck known as the absolute cohomological purity conjecture was proved by Ofer Gabber. [3] It concerns a closed immersion of schemes (regular, noetherian) that is purely of codimension d, and the relative local cohomology in the étale theory. With coefficients mod n where n is invertible, the cohomology should occur only with index 2d (and take on a predicted value). [4]

In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.

Michael Artin American mathematician

Michael Artin is an American mathematician and a professor emeritus in the Massachusetts Institute of Technology mathematics department, known for his contributions to algebraic geometry.

Alexander Grothendieck French mathematician

Alexander Grothendieck was a mathematician who became the leading figure in the creation of modern algebraic geometry. His research extended the scope of the field and added elements of commutative algebra, homological algebra, sheaf theory and category theory to its foundations, while his so-called "relative" perspective led to revolutionary advances in many areas of pure mathematics. He is considered by many to be the greatest mathematician of the 20th century.

Notes

  1. "ON THE PURITY OF THE BRANCH LOCUS OF ALGEBRAIC FUNCTIONS". Proc. Natl. Acad. Sci. U.S.A. 44 (8): 791–6. August 1958. doi:10.1073/pnas.44.8.791. PMC   534562 . PMID   16590274.
  2. "REMARKS ON A PAPER OF ZARISKI ON THE PURITY OF BRANCH-LOCI". Proc. Natl. Acad. Sci. U.S.A. 44 (8): 796–9. August 1958. doi:10.1073/pnas.44.8.796. PMC   534563 . PMID   16590275.
  3. K. Fujiwara, A proof of the absolute purity conjecture (after Gabber). Algebraic Geometry 2000, Azumino (Hotaka), 153183.
  4. As formulated in http://www.math.utah.edu/~niziol/icm20062.pdf, p. 4.

Related Research Articles

In mathematics, the Weil conjectures were some highly influential proposals by André Weil (1949), which led to a successful multi-decade program to prove them, in which many leading researchers developed the framework of modern algebraic geometry and number theory.

In mathematics, a sheaf is a tool for systematically tracking locally defined data attached to the open sets of a topological space. The data can be restricted to smaller open sets, and the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original one. For example, such data can consist of the rings of continuous or smooth real-valued functions defined on each open set. Sheaves are by design quite general and abstract objects, and their correct definition is rather technical. They are variously defined, for example, as sheaves of sets or sheaves of rings, depending on the type of data assigned to open sets.

In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.

Motivic cohomology is an invariant of algebraic varieties and of more general schemes. It includes the Chow ring of algebraic cycles as a special case. Some of the deepest problems in algebraic geometry and number theory are attempts to understand motivic cohomology.

Arithmetic geometry A branch of algebraic geometry focused on problems in number theory

In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic varieties.

In mathematics, algebraic spaces form a generalization of the schemes of algebraic geometry, introduced by Artin for use in deformation theory. Intuitively, schemes are given by gluing together affine schemes using the Zariski topology, while algebraic spaces are given by gluing together affine schemes using the finer étale topology. Alternatively one can think of schemes as being locally isomorphic to affine schemes in the Zariski topology, while algebraic spaces are locally isomorphic to affine schemes in the étale topology.

In mathematics, a branched covering is a map that is almost a covering map, except on a small set.

In algebraic geometry, an étale morphism is a morphism of schemes that is formally étale and locally of finite presentation. This is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem, but because open sets in the Zariski topology are so large, they are not necessarily local isomorphisms. Despite this, étale maps retain many of the properties of local analytic isomorphisms, and are useful in defining the algebraic fundamental group and the étale topology.

Tate conjecture conjecture in algebraic geometry

In number theory and algebraic geometry, the Tate conjecture is a 1963 conjecture of John Tate that would describe the algebraic cycles on a variety in terms of a more computable invariant, the Galois representation on étale cohomology. The conjecture is a central problem in the theory of algebraic cycles. It can be considered an arithmetic analog of the Hodge conjecture.

This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.

In algebraic geometry, the Chow groups of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general.

Resolution of singularities problem asking whether every algebraic variety V has a resolution

In algebraic geometry, the problem of resolution of singularities asks whether every algebraic variety V has a resolution, a non-singular variety W with a proper birational map WV. For varieties over fields of characteristic 0 this was proved in Hironaka (1964), while for varieties over fields of characteristic p it is an open problem in dimensions at least 4.

In mathematics, L2 cohomology is a cohomology theory for smooth non-compact manifolds M with Riemannian metric. It is defined in the same way as de Rham cohomology except that one uses square-integrable differential forms. The notion of square-integrability makes sense because the metric on M gives rise to a norm on differential forms and a volume form.

In algebraic geometry, the Nisnevich topology, sometimes called the completely decomposed topology, is a Grothendieck topology on the category of schemes which has been used in algebraic K-theory, A¹ homotopy theory, and the theory of motives. It was originally introduced by Yevsey Nisnevich, who was motivated by the theory of adeles.

In mathematics, p-adic Hodge theory is a theory that provides a way to classify and study p-adic Galois representations of characteristic 0 local fields with residual characteristic p. The theory has its beginnings in Jean-Pierre Serre and John Tate's study of Tate modules of abelian varieties and the notion of Hodge–Tate representation. Hodge–Tate representations are related to certain decompositions of p-adic cohomology theories analogous to the Hodge decomposition, hence the name p-adic Hodge theory. Further developments were inspired by properties of p-adic Galois representations arising from the étale cohomology of varieties. Jean-Marc Fontaine introduced many of the basic concepts of the field.

In mathematics, the norm residue isomorphism theorem is a long-sought result relating Milnor K-theory and Galois cohomology. The result has a relatively elementary formulation and at the same time represents the key juncture in the proofs of many seemingly unrelated theorems from abstract algebra, theory of quadratic forms, algebraic K-theory and the theory of motives. The theorem asserts that a certain statement holds true for any prime and any natural number . John Milnor speculated that this theorem might be true for and all , and this question became known as Milnor's conjecture. The general case was conjectured by Spencer Bloch and Kazuya Kato and became known as the Bloch–Kato conjecture or the motivic Bloch–Kato conjecture to distinguish it from the Bloch–Kato conjecture on values of L-functions. The norm residue isomorphism theorem was proved by Vladimir Voevodsky using a number of highly innovative results of Markus Rost.