R-905

Last updated
Microwave transmission station "Richtstrahlanlage R-905" Swiss microwave radio station R-905.jpg
Microwave transmission station "Richtstrahlanlage R-905"

The R-905 is a microwave transmission station that is used in the Swiss Army. The directional station consists of a transmitting and receiving device (SE R-905) - in which the antenna reflector is also integrated - the operator terminal (BT) - a handset with keypad and LCD - and a supply equipment (SA 95/1). There is a 24V battery, a tripod with strap-down ropes and a camouflage net. All mentioned equipment and material adds up to about 230 kg but can be carried by troops separately, or can be loaded on to a mule.

Over a maximum of 4 km of optical fiber cable an "intermediary unit" (BSG 93) is connected to the SE. The link has an usable bitrate of either 2 or 8 Mbit/s.

The frequency range is from 14.64 to 17  GHz, with a frequency separation of at least 150 MHz between Transmit (TX) and Receive (RX) channels.

The maximum range is about 55 km. The total range can be increased by using up to two R-905 as relay stations. A relay station consists of two R-905s, which are interconnected with an optical fiber cable.

Over an unencrypted service channel which is multiplexed to the utility and remote control, conversations can be held with the other operators of the BSG93s and the SEs.

Related Research Articles

<span class="mw-page-title-main">Cable television</span> Television content transmitted via signals on coaxial cable

Cable television is a system of delivering television programming to consumers via radio frequency (RF) signals transmitted through coaxial cables, or in more recent systems, light pulses through fibre-optic cables. This contrasts with broadcast television, in which the television signal is transmitted over-the-air by radio waves and received by a television antenna attached to the television; or satellite television, in which the television signal is transmitted over-the-air by radio waves from a communications satellite orbiting the Earth, and received by a satellite dish antenna on the roof. FM radio programming, high-speed Internet, telephone services, and similar non-television services may also be provided through these cables. Analog television was standard in the 20th century, but since the 2000s, cable systems have been upgraded to digital cable operation.

A passband is the range of frequencies or wavelengths that can pass through a filter. For example, a radio receiver contains a bandpass filter to select the frequency of the desired radio signal out of all the radio waves picked up by its antenna. The passband of a receiver is the range of frequencies it can receive when it is tuned into the desired frequency (channel).

<span class="mw-page-title-main">Repeater</span> Relay station

In telecommunications, a repeater is an electronic device that receives a signal and retransmits it. Repeaters are used to extend transmissions so that the signal can cover longer distances or be received on the other side of an obstruction. Some types of repeaters broadcast an identical signal, but alter its method of transmission, for example, on another frequency or baud rate.

<span class="mw-page-title-main">Transmission medium</span> Conduit for signal propagation

A transmission medium is a system or substance that can mediate the propagation of signals for the purposes of telecommunication. Signals are typically imposed on a wave of some kind suitable for the chosen medium. For example, data can modulate sound, and a transmission medium for sounds may be air, but solids and liquids may also act as the transmission medium. Vacuum or air constitutes a good transmission medium for electromagnetic waves such as light and radio waves. While material substance is not required for electromagnetic waves to propagate, such waves are usually affected by the transmission media they pass through, for instance, by absorption or reflection or refraction at the interfaces between media. Technical devices can therefore be employed to transmit or guide waves. Thus, an optical fiber or a copper cable is used as transmission media.

<span class="mw-page-title-main">Wavelength-division multiplexing</span> Fiber-optic communications technology

In fiber-optic communications, wavelength-division multiplexing (WDM) is a technology which multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths of laser light. This technique enables bidirectional communications over a single strand of fiber, also called wavelength-division duplexing, as well as multiplication of capacity.

<span class="mw-page-title-main">Frequency-division multiplexing</span> Signal processing technique in telecommunications

In telecommunications, frequency-division multiplexing (FDM) is a technique by which the total bandwidth available in a communication medium is divided into a series of non-overlapping frequency bands, each of which is used to carry a separate signal. This allows a single transmission medium such as a microwave radio link, cable or optical fiber to be shared by multiple independent signals. Another use is to carry separate serial bits or segments of a higher rate signal in parallel.

<span class="mw-page-title-main">Cable television headend</span> Facility for cable television system

A cable television headend is a master facility for receiving television signals for processing and distribution over a cable television system. A headend facility may be staffed or unstaffed and is typically surrounded by some type of security fencing. The building is typically sturdy and purpose-built to provide security, cooling, and easy access for the electronic equipment used to receive and re-transmit video over the local cable infrastructure. One can also find head ends in power-line communication (PLC) substations and Internet communications networks.

<span class="mw-page-title-main">Marine VHF radio</span> Radios operating in the very high frequency maritime mobile band

Marine VHF radio is a worldwide system of two way radio transceivers on ships and watercraft used for bidirectional voice communication from ship-to-ship, ship-to-shore, and in certain circumstances ship-to-aircraft. It uses FM channels in the very high frequency (VHF) radio band in the frequency range between 156 and 174 MHz, inclusive, designated by the International Telecommunication Union as the VHF maritime mobile band. In some countries additional channels are used, such as the L and F channels for leisure and fishing vessels in the Nordic countries. Transmitter power is limited to 25 watts, giving them a range of about 100 kilometres.

Hybrid fiber-coaxial (HFC) is a broadband telecommunications network that combines optical fiber and coaxial cable. It has been commonly employed globally by cable television operators since the early 1990s.

<span class="mw-page-title-main">Passive optical network</span> Technology used to provide broadband to the end consumer via fiber

A passive optical network (PON) is a fiber-optic telecommunications technology for delivering broadband network access to end-customers. Its architecture implements a point-to-multipoint topology in which a single optical fiber serves multiple endpoints by using unpowered (passive) fiber optic splitters to divide the fiber bandwidth among the endpoints. Passive optical networks are often referred to as the last mile between an Internet service provider (ISP) and its customers. Many fiber ISPs prefer this technology.

Power-system automation is the act of automatically controlling the power system via instrumentation and control devices. Substation automation refers to using data from Intelligent electronic devices (IED), control and automation capabilities within the substation, and control commands from remote users to control power-system devices.

<span class="mw-page-title-main">Optical fiber</span> Light-conducting fiber

An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means to transmit light between the two ends of the fiber and find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths than electrical cables. Fibers are used instead of metal wires because signals travel along them with less loss; in addition, fibers are immune to electromagnetic interference, a problem from which metal wires suffer. Fibers are also used for illumination and imaging, and are often wrapped in bundles so they may be used to carry light into, or images out of confined spaces, as in the case of a fiberscope. Specially designed fibers are also used for a variety of other applications, some of them being fiber optic sensors and fiber lasers.

Optical networking is a means of communication that uses signals encoded in light to transmit information in various types of telecommunications networks. These include limited range local-area networks (LAN) or wide-area networks (WAN), which cross metropolitan and regional areas as well as long-distance national, international and transoceanic networks. It is a form of optical communication that relies on optical amplifiers, lasers or LEDs and wave division multiplexing (WDM) to transmit large quantities of data, generally across fiber-optic cables. Because it is capable of achieving extremely high bandwidth, it is an enabling technology for the Internet and telecommunication networks that transmit the vast majority of all human and machine-to-machine information.

<span class="mw-page-title-main">Microwave transmission</span> Transmission of information via microwaves

Microwave transmission is the transmission of information by electromagnetic waves with wavelengths in the microwave frequency range of 300MHz to 300GHz(1 m - 1 mm wavelength) of the electromagnetic spectrum. Microwave signals are normally limited to the line of sight, so long-distance transmission using these signals requires a series of repeaters forming a microwave relay network. It is possible to use microwave signals in over-the-horizon communications using tropospheric scatter, but such systems are expensive and generally used only in specialist roles.

<span class="mw-page-title-main">Fiber-optic communication</span> Method of transmitting information

Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of infrared or visible light through an optical fiber. The light is a form of carrier wave that is modulated to carry information. Fiber is preferred over electrical cabling when high bandwidth, long distance, or immunity to electromagnetic interference is required. This type of communication can transmit voice, video, and telemetry through local area networks or across long distances.

<span class="mw-page-title-main">Telecommunications engineering</span> Engineering science that deals with the recording, transmission, processing and storage of messages

Telecommunications engineering is a subfield of electronics engineering which seeks to design and devise systems of communication at a distance. The work ranges from basic circuit design to strategic mass developments. A telecommunication engineer is responsible for designing and overseeing the installation of telecommunications equipment and facilities, such as complex electronic switching systems, and other plain old telephone service facilities, optical fiber cabling, IP networks, and microwave transmission systems. Telecommunications engineering also overlaps with broadcast engineering.

<span class="mw-page-title-main">Fiber-optic cable</span> Cable assembly containing one or more optical fibers that are used to carry light

A fiber-optic cable, also known as an optical-fiber cable, is an assembly similar to an electrical cable but containing one or more optical fibers that are used to carry light. The optical fiber elements are typically individually coated with plastic layers and contained in a protective tube suitable for the environment where the cable is used. Different types of cable are used for optical communication in different applications, for example long-distance telecommunication or providing a high-speed data connection between different parts of a building.

Radio over fiber (RoF) or RF over fiber (RFoF) refers to a technology whereby light is modulated by a radio frequency signal and transmitted over an optical fiber link. Main technical advantages of using fiber optical links are lower transmission losses and reduced sensitivity to noise and electromagnetic interference compared to all-electrical signal transmission.

An in-building cellular enhancement system, commonly implemented in conjunction with a distributed antenna system (DAS), is a telecommunications solution which is used to extend and distribute the cellular signal of a given mobile network operator within a building. In the United States, operators commonly supported by such solutions include AT&T Mobility, Verizon Wireless, Sprint Corporation, T-Mobile US, in addition to smaller regional carriers as required. Below ground level, large buildings and high rises are examples where mobile phones are unable to properly reach the carrier's macro or outdoor network. In these environments, the in-building cellular enhancement system will connect to the carrier's signal source which is typically a bi-directional amplifier or a base transceiver station. This signal source transmits the mobile network operator's licensed radio frequency. This frequency is then transported within the building using coaxial cable, optical fiber or Category 5e/Category 6 twisted pair cable. In-building coverage antennas are strategically placed to provide the best overall coverage for users.

Physical media refers to the physical materials that are used to store or transmit information in data communications. These physical media are generally physical objects made of materials such as copper or glass. They can be touched and felt, and have physical properties such as weight and color. For a number of years, copper and glass were the only media used in computer networking.