Rainbow heterodyne detection

Last updated

The objective of synthetic array heterodyne detection is to isolate regions of a large area detector surface into virtual pixels. This provides the benefits of having multiple pixels (for example, to make an image) without having to have physical pixels (i.e. isolated detector elements). The detector can be a simple single wire output over which all the virtual pixels can be read out continuously and in parallel. The pixels are multiplexed in the frequency domain.

Contents

This solves two common problems encountered in optical heterodyne detection. First, heterodyne signals are beat frequencies between the signal source and a reference source (dubbed local oscillator). They are not DC light levels[ clarification needed ] but oscillating signals and thus unlike conventional detectors the light flux from the signal cannot be integrated on a capacitor. Therefore, to have an array of pixels, each pixel must be backed by AC amplifier and detection circuit which is complex. With synthetic array detection, all the signals can be amplified and detected by the same circuit. The second problem synthetic array detection solves arrises, not in pixel imaging but when the signal is not spatially coherent across the surface of the detector. In this case, the beat frequencies arising are differently phased across the detector surface and these destructively interfere producing a low signal output. In synthetic array detection, each region of the detector has a different fundamental for its beat frequency and thus there is no stationary interference even if the signal's phase varies across the surface of the detector.

Illustration of the concept

Figure 1 shows a particular implementation format of the synthetic array method. This implementation is called "rainbow heterodyne detection" because the local oscillator has its frequencies spread out like a rainbow across the surface of the detector.

The output from the detector is a multi-frequency signal. If this output signal is spectrally resolved then each different electrical frequency corresponds to a different location on the detector.

Implementation

Key difficulties

While the concept is simple, there is a key difficulty that must be overcome by any implementation: how to generate a rainbow of spread optical frequencies whose bandwidth of difference frequencies with respect to the detector is less than the electrical bandwidth of the detector. That is to say, a typical detector might have a bandwidth on the scale of 100 Megahertz. If the biggest difference frequency is |ω6-ω6| then this difference need to be smaller than 100 Megahertz. This in turn means the spacing between the adjacent difference frequencies must be less than 100Mhz and on average less than 100Mhz/number of pixels. To see why this presents a problem consider dispersing white light with a prism. For any finite size prism you cannot get enough dispersion to create resolved (non-overlapping beamlets) that differ by less than a megahertz. Thus dispersion methods cannot disperse a broadband light source to create the frequency shifted beamlets with narrowly spaced difference frequencies, One possible way to achieve this is to have a separate laser source for every beamlet; these sources must be precisely frequency controlled so their center frequencies are separated by the desired shifts. The primary problem with this is practical: The bandwidth and frequency drift of most lasers is much greater than 1 Mhtz. The lasers needed for this must be of sufficiently narrow spectral purity that they can interfere coherently with the signal source. Even so, having multiple narrow band precision frequency-tuned lasers is also complex.

Acousto-optic solution

One practical way to achieve this is to use an acousto optic deflector. These devices deflect an incoming light beam in proportion to the Acoustic driving frequency. They also have the side effect of shifting the output optical frequency by the acoustic frequency. Thus when one of these is driven with multiple acoustic frequencies a series of deflected beams are emitted each with a small and different shift in the optical frequency. Conveniently, this works even if the source laser has low spectral purity since every sub-spectral component of the beamlet is mutually phase coherent with the source and shifted by the same frequency. In particular this approach allows the use of inexpensive, high power or pulsed lasers as sources because no frequency control is required.

Figure 2 shows a simple 2 "pixel" version of this implementation. A laser beam is deflected by a 25Mhz and a 29Mhz acoustic frequency via an acousto-optic modulator. Two beams emerge and both are combined on the detector along with the original laser beam. The 25Mhz beamlet illuminates the left half of the detector while the 29Mhz beamlet illuminates the right half of the detector. The beat frequencies against the signal beam on the detector produce 25 and 29 MHz output frequencies. Thus we can differentiate which photons hit the left or right half of the detector. This method scales to larger numbers of pixels since AOD's with thousands of resolvable spots (each with a different frequency) are commercially available. 2D arrays can be produced with a second AOD arranged at right angles, or by holographic methods.

Multiplex

The method multiplexes all the spatial positions on the detector by frequency. If frequencies are uniformly spaced then a simple fourier transform recovers the coherent image. However, there is no reason the frequencies have to be uniformly spaced so one can adjust the number, size and shape of the pixels dynamically. One can also independently change the Heterodyne gain on each pixel individually simply by making the LO beamlet more or less strong. Thus one can extend the dynamic range of the receiver by lowering the gain on bright pixels, raising it on dim ones, and possibly using larger pixels for dim regions.

Comparison to traditional pixel arrays

The multiplex technique does introduce two limitations as well. In the case of imaging, the signals must not be changing faster than the Nyquist time constant implied by the difference frequency between adjacent pixels. If it does do the pixels blur or alias. (For non-imaging applications—such as when one is simply trying to collect more light but is limited by the spatial incoherence—that aliasing is not important since it does not change the incoherent sum of the pixels.) Additionally, when one is working near the shot noise limit the multiplex approach can raise the noise floor since all of the pixels see the shot noise from the whole array (since they all are connected by the same wire). (Again for non-imaging applications this may not be important).

Related Research Articles

<span class="mw-page-title-main">Heterodyne</span> Signal processing technique

A heterodyne is a signal frequency that is created by combining or mixing two other frequencies using a signal processing technique called heterodyning, which was invented by Canadian inventor-engineer Reginald Fessenden. Heterodyning is used to shift signals from one frequency range into another, and is also involved in the processes of modulation and demodulation. The two input frequencies are combined in a nonlinear signal-processing device such as a vacuum tube, transistor, or diode, usually called a mixer.

In optical communications, intensity modulation (IM) is a form of modulation in which the optical power output of a source is varied in accordance with some characteristic of the modulating signal. The envelope of the modulated optical signal is an analog of the modulating signal in the sense that the instantaneous power of the envelope is an analog of the characteristic of interest in the modulating signal.

Fourier-transform spectroscopy is a measurement technique whereby spectra are collected based on measurements of the coherence of a radiative source, using time-domain or space-domain measurements of the radiation, electromagnetic or not. It can be applied to a variety of types of spectroscopy including optical spectroscopy, infrared spectroscopy, nuclear magnetic resonance (NMR) and magnetic resonance spectroscopic imaging (MRSI), mass spectrometry and electron spin resonance spectroscopy.

<span class="mw-page-title-main">Interferometry</span> Measurement method using interference of waves

Interferometry is a technique which uses the interference of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber optics, engineering metrology, optical metrology, oceanography, seismology, spectroscopy, quantum mechanics, nuclear and particle physics, plasma physics, biomolecular interactions, surface profiling, microfluidics, mechanical stress/strain measurement, velocimetry, optometry, and making holograms.

In physics, coherence expresses the potential for two waves to interfere. Two monochromatic beams from a single source always interfere. Physical sources are not strictly monochromatic: they may be partly coherent. Beams from different sources are mutually incoherent.

<span class="mw-page-title-main">Optical coherence tomography</span> Imaging technique

Optical coherence tomography (OCT) is an imaging technique that uses interferometry with short-coherence-length light to obtain micrometer-level depth resolution and uses transverse scanning of the light beam to form two- and three-dimensional images from light reflected from within biological tissue or other scattering media. Short-coherence-length light can be obtained using a superluminescent diode (SLD) with a broad spectral bandwidth or a broadly tunable laser with narrow linewidth. The first demonstration of OCT imaging was published by a team from MIT and Harvard Medical School in a 1991 article in the journal Science. The article introduced the term "OCT" to credit its derivation from optical coherence-domain reflectometry, in which the axial resolution is based on temporal coherence. The first demonstrations of in vivo OCT imaging quickly followed.

<span class="mw-page-title-main">Synthetic-aperture radar</span> Form of radar used to create images of landscapes

Synthetic-aperture radar (SAR) is a form of radar that is used to create two-dimensional images or three-dimensional reconstructions of objects, such as landscapes. SAR uses the motion of the radar antenna over a target region to provide finer spatial resolution than conventional stationary beam-scanning radars. SAR is typically mounted on a moving platform, such as an aircraft or spacecraft, and has its origins in an advanced form of side looking airborne radar (SLAR). The distance the SAR device travels over a target during the period when the target scene is illuminated creates the large synthetic antenna aperture. Typically, the larger the aperture, the higher the image resolution will be, regardless of whether the aperture is physical or synthetic – this allows SAR to create high-resolution images with comparatively small physical antennas. For a fixed antenna size and orientation, objects which are further away remain illuminated longer – therefore SAR has the property of creating larger synthetic apertures for more distant objects, which results in a consistent spatial resolution over a range of viewing distances.

<span class="mw-page-title-main">Bat detector</span>

A bat detector is a device used to detect the presence of bats by converting their echolocation ultrasound signals, as they are emitted by the bats, to audible frequencies, usually about 120 Hz to 15 kHz. There are other types of detectors which record bat calls so that they can be analysed afterward, but these are more commonly referred to by their particular function.

<span class="mw-page-title-main">Terahertz time-domain spectroscopy</span>

In physics, terahertz time-domain spectroscopy (THz-TDS) is a spectroscopic technique in which the properties of matter are probed with short pulses of terahertz radiation. The generation and detection scheme is sensitive to the sample's effect on both the amplitude and the phase of the terahertz radiation.

<span class="mw-page-title-main">Homodyne detection</span> Sensor implementation technique

In electrical engineering, homodyne detection is a method of extracting information encoded as modulation of the phase and/or frequency of an oscillating signal, by comparing that signal with a standard oscillation that would be identical to the signal if it carried null information. "Homodyne" signifies a single frequency, in contrast to the dual frequencies employed in heterodyne detection.

Ultrafast laser spectroscopy is a category of spectroscopic techniques using ultrashort pulse lasers for the study of dynamics on extremely short time scales. Different methods are used to examine the dynamics of charge carriers, atoms, and molecules. Many different procedures have been developed spanning different time scales and photon energy ranges; some common methods are listed below.

Holographic interferometry (HI) is a technique which enables the measurements of static and dynamic displacements of objects with optically rough surfaces at optical interferometric precision. These measurements can be applied to stress, strain and vibration analysis, as well as to non-destructive testing and radiation dosimetry. It can also be used to detect optical path length variations in transparent media, which enables, for example, fluid flow to be visualised and analyzed. It can also be used to generate contours representing the form of the surface.

Photomixing is the generation of continuous wave terahertz radiation from two lasers. The beams are mixed together and focused onto a photomixer device which generates the terahertz radiation. It is technologically significant because there are few sources capable of providing radiation in this waveband, others include frequency multiplied electronic/microwave sources, quantum cascade laser and ultrashort pulsed lasers with photoconductive switches as used in terahertz time-domain spectroscopy. The advantages of this technique are that it is continuously tunable over the frequency range from 300 GHz to 3 THz, and spectral resolutions in the order of 1 MHz can be achieved. However, the achievable power is on the order of 10−8 W.

<span class="mw-page-title-main">Laser beam profiler</span> Measurement device

A laser beam profiler captures, displays, and records the spatial intensity profile of a laser beam at a particular plane transverse to the beam propagation path. Since there are many types of lasers—ultraviolet, visible, infrared, continuous wave, pulsed, high-power, low-power—there is an assortment of instrumentation for measuring laser beam profiles. No single laser beam profiler can handle every power level, pulse duration, repetition rate, wavelength, and beam size.

Wavelength selective switching components are used in WDM optical communications networks to route (switch) signals between optical fibres on a per-wavelength basis.

Optical heterodyne detection is a method of extracting information encoded as modulation of the phase, frequency or both of electromagnetic radiation in the wavelength band of visible or infrared light. The light signal is compared with standard or reference light from a "local oscillator" (LO) that would have a fixed offset in frequency and phase from the signal if the latter carried null information. "Heterodyne" signifies more than one frequency, in contrast to the single frequency employed in homodyne detection.

<span class="mw-page-title-main">Laser Doppler vibrometer</span> Instrument for sensing microscopic vibrations of a surface

A laser Doppler vibrometer (LDV) is a scientific instrument that is used to make non-contact vibration measurements of a surface. The laser beam from the LDV is directed at the surface of interest, and the vibration amplitude and frequency are extracted from the Doppler shift of the reflected laser beam frequency due to the motion of the surface. The output of an LDV is generally a continuous analog voltage that is directly proportional to the target velocity component along the direction of the laser beam.

<span class="mw-page-title-main">Fourier-transform infrared spectroscopy</span> Technique to analyze the infrared spectrum of matter

Fourier-transform infrared spectroscopy (FTIR) is a technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas. An FTIR spectrometer simultaneously collects high-resolution spectral data over a wide spectral range. This confers a significant advantage over a dispersive spectrometer, which measures intensity over a narrow range of wavelengths at a time.

<span class="mw-page-title-main">Acousto-optic programmable dispersive filter</span>

An acousto-optic programmable dispersive filter (AOPDF) is a special type of collinear-beam acousto-optic modulator capable of shaping spectral phase and amplitude of ultrashort laser pulses. AOPDF was invented by Pierre Tournois. Typically, quartz crystals are used for the fabrication of the AOPDFs operating in the UV spectral domain, paratellurite crystals are used in the visible and the NIR and calomel in the MIR (3–20 μm). Recently introduced Lithium niobate crystals allow for high-repetition rate operation (> 100 kHz) owing to their high acoustic velocity. The AOPDF is also used for the active control of the carrier-envelope phase of few-cycle optical pulses and as a part of pulse-measurement schemes. Although sharing a lot in principle of operation with an acousto-optic tunable filter, the AOPDF should not be confused with it, since in the former the tunable parameter is the transfer function and in the latter it is the impulse response.

<span class="mw-page-title-main">Coherent Raman scattering microscopy</span> Multi-photon microscopy technique

Coherent Raman scattering (CRS) microscopy is a multi-photon microscopy technique based on Raman-active vibrational modes of molecules. The two major techniques in CRS microscopy are stimulated Raman scattering (SRS) and coherent anti-Stokes Raman scattering (CARS). SRS and CARS were theoretically predicted and experimentally realized in the 1960s. In 1982 the first CARS microscope was demonstrated. In 1999, CARS microscopy using a collinear geometry and high numerical aperture objective were developed in Xiaoliang Sunney Xie's lab at Harvard University. This advancement made the technique more compatible with modern laser scanning microscopes. Since then, CRS's popularity in biomedical research started to grow. CRS is mainly used to image lipid, protein, and other bio-molecules in live or fixed cells or tissues without labeling or staining. CRS can also be used to image samples labeled with Raman tags, which can avoid interference from other molecules and normally allows for stronger CRS signals than would normally be obtained for common biomolecules. CRS also finds application in other fields, such as material science and environmental science.

References