RecLOH

Last updated

RecLOH is a term in genetics that is an abbreviation for "Recombinant Loss of Heterozygosity".

Contents

This is a type of mutation which occurs with DNA by recombination. From a pair of equivalent ("homologous"), but slightly different (heterozygous) genes, a pair of identical genes results. In this case there is a non-reciprocal exchange of genetic code between the chromosomes, in contrast to chromosomal crossover, because genetic information is lost.

For Y chromosome

In genetic genealogy, the term is used particularly concerning similar seeming events in Y chromosome DNA. This type of mutation happens within one chromosome, and does not involve a reciprocal transfer. Rather, one homologous segment "writes over" the other. The mechanism is presumed to be different from RecLOH events in autosomal chromosomes, since the target is the very same chromosome instead of the homologous one.

During the mutation one of these copies overwrites the other. Thus the differences between the two are lost. Because differences are lost, heterozygosity is lost.

Recombination on the Y-chromosome does not only take place during meiosis, but virtually at every mitosis when the Y chromosome condenses, because it doesn't require pairing between chromosomes. Recombination frequency even exceeds the frame shift mutation frequency (slipped strand mispairing) of (average fast) Y-STRs, however many recombination products may lead to infertile germ cells and "daughter out".

Recombination events (RecLOH) can be observed if YSTR databases are searched for twin alleles at 3 or more duplicated markers on the same palindrome (hairpin). E.g. DYS459, DYS464 and DYS724 (CDY) are located on the same palindrome P1. A high proportion of 9-9, 15-15-17-17, 36-36 combinations and similar twin allelic patterns will be found. PCR typing technologies have been developed (e.g. DYS464X) that are able to verify that there are most frequently really two alleles of each, so we can be sure that there is no gene deletion. Family genealogies have proven many times, that parallel changes on all markers located on the same palindrome are frequently observed and the result of those changes are always twin alleles. So a 9–10, 15-16-17-17, 36-38 haplotype can change in one recombination event to the one mentioned above, because all three markers (DYS459, DYS464 and DYS724) are affected by one and the same recLOH event.

See also

Related Research Articles

<span class="mw-page-title-main">Chromosomal crossover</span> Cellular process

Chromosomal crossover, or crossing over, is the exchange of genetic material during sexual reproduction between two homologous chromosomes' non-sister chromatids that results in recombinant chromosomes. It is one of the final phases of genetic recombination, which occurs in the pachytene stage of prophase I of meiosis during a process called synapsis. Synapsis begins before the synaptonemal complex develops and is not completed until near the end of prophase I. Crossover usually occurs when matching regions on matching chromosomes break and then reconnect to the other chromosome.

Gene knockouts are a widely used genetic engineering technique that involves the targeted removal or inactivation of a specific gene within an organism's genome. This can be done through a variety of methods, including homologous recombination, CRISPR-Cas9, and TALENs.

<span class="mw-page-title-main">Genetic recombination</span> Production of offspring with combinations of traits that differ from those found in either parent

Genetic recombination is the exchange of genetic material between different organisms which leads to production of offspring with combinations of traits that differ from those found in either parent. In eukaryotes, genetic recombination during meiosis can lead to a novel set of genetic information that can be further passed on from parents to offspring. Most recombination occurs naturally and can be classified into two types: (1) interchromosomal recombination, occurring through independent assortment of alleles whose loci are on different but homologous chromosomes ; & (2) intrachromosomal recombination, occurring through crossing over.

Genetic linkage is the tendency of DNA sequences that are close together on a chromosome to be inherited together during the meiosis phase of sexual reproduction. Two genetic markers that are physically near to each other are unlikely to be separated onto different chromatids during chromosomal crossover, and are therefore said to be more linked than markers that are far apart. In other words, the nearer two genes are on a chromosome, the lower the chance of recombination between them, and the more likely they are to be inherited together. Markers on different chromosomes are perfectly unlinked, although the penetrance of potentially deleterious alleles may be influenced by the presence of other alleles, and these other alleles may be located on other chromosomes than that on which a particular potentially deleterious allele is located.

<span class="mw-page-title-main">Homologous chromosome</span> Chromosomes that pair in fertilization

A couple of homologous chromosomes, or homologs, are a set of one maternal and one paternal chromosome that pair up with each other inside a cell during fertilization. Homologs have the same genes in the same loci where they provide points along each chromosome which enable a pair of chromosomes to align correctly with each other before separating during meiosis. This is the basis for Mendelian inheritance which characterizes inheritance patterns of genetic material from an organism to its offspring parent developmental cell at the given time and area.

<span class="mw-page-title-main">Mosaic (genetics)</span> Condition in multi-cellular organisms

Mosaicism or genetic mosaicism is a condition in multicellular organisms in which a single organism possesses more than one genetic line as the result of genetic mutation. This means that various genetic lines resulted from a single fertilized egg. Mosaicism is one of several possible causes of chimerism, wherein a single organism is composed of cells with more than one distinct genotype.

<span class="mw-page-title-main">Haplotype</span> Group of genes from one parent

A haplotype is a group of alleles in an organism that are inherited together from a single parent.

Genetics, a discipline of biology, is the science of heredity and variation in living organisms.

Gene conversion is the process by which one DNA sequence replaces a homologous sequence such that the sequences become identical after the conversion event. Gene conversion can be either allelic, meaning that one allele of the same gene replaces another allele, or ectopic, meaning that one paralogous DNA sequence converts another.

<span class="mw-page-title-main">Loss of heterozygosity</span>

Loss of heterozygosity (LOH) is a type of genetic abnormality in diploid organisms in which one copy of an entire gene and its surrounding chromosomal region are lost. Since diploid cells have two copies of their genes, one from each parent, a single copy of the lost gene still remains when this happens, but any heterozygosity is no longer present.

<span class="mw-page-title-main">Homologous recombination</span> Genetic recombination between identical or highly similar strands of genetic material

Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids.

Coalescent theory is a model of how alleles sampled from a population may have originated from a common ancestor. In the simplest case, coalescent theory assumes no recombination, no natural selection, and no gene flow or population structure, meaning that each variant is equally likely to have been passed from one generation to the next. The model looks backward in time, merging alleles into a single ancestral copy according to a random process in coalescence events. Under this model, the expected time between successive coalescence events increases almost exponentially back in time. Variance in the model comes from both the random passing of alleles from one generation to the next, and the random occurrence of mutations in these alleles.

Mitotic recombination is a type of genetic recombination that may occur in somatic cells during their preparation for mitosis in both sexual and asexual organisms. In asexual organisms, the study of mitotic recombination is one way to understand genetic linkage because it is the only source of recombination within an individual. Additionally, mitotic recombination can result in the expression of recessive genes in an otherwise heterozygous individual. This expression has important implications for the study of tumorigenesis and lethal recessive genes. Mitotic homologous recombination occurs mainly between sister chromatids subsequent to replication. Inter-sister homologous recombination is ordinarily genetically silent. During mitosis the incidence of recombination between non-sister homologous chromatids is only about 1% of that between sister chromatids.

<span class="mw-page-title-main">Zygosity</span> Degree of similarity of the alleles in an organism

Zygosity is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism.

In human genetics, Haplogroup G-P303 is a Y-chromosome haplogroup. It is a branch of haplogroup G (Y-DNA) (M201). In descending order, G-P303 is additionally a branch of G2 (P287), G2a (P15), G2a2, G2a2b, G2a2b2, and finally G2a2b2a. This haplogroup represents the majority of haplogroup G men in most areas of Europe west of Russia and the Black Sea. To the east, G-P303 is found among G persons across the Middle East, Iran, the southern Caucasus area, China, and India. G-P303 exhibits its highest diversity in the Levant.

The relationship of the Mayas to other indigenous peoples of the Americas has been assessed using traditional genetic markers. Mayas inhabited several parts of Mexico and Central America, including Chiapas, the northern lowlands of the Yucatán Peninsula, the southern lowlands and highlands of Guatemala, Belize, and parts of western El Salvador and Honduras. Genetic studies of the Maya people are reported to show higher levels of variation when compared to other groups.

The Infinite sites model (ISM) is a mathematical model of molecular evolution first proposed by Motoo Kimura in 1969. Like other mutation models, the ISM provides a basis for understanding how mutation develops new alleles in DNA sequences. Using allele frequencies, it allows for the calculation of heterozygosity, or genetic diversity, in a finite population and for the estimation of genetic distances between populations of interest.

This glossary of genetics is a list of definitions of terms and concepts commonly used in the study of genetics and related disciplines in biology, including molecular biology, cell biology, and evolutionary biology. It is intended as introductory material for novices; for more specific and technical detail, see the article corresponding to each term. For related terms, see Glossary of evolutionary biology.

This glossary of genetics is a list of definitions of terms and concepts commonly used in the study of genetics and related disciplines in biology, including molecular biology, cell biology, and evolutionary biology. It is split across two articles:

References