The Rhind Mathematical Papyrus, [1] [2] an ancient Egyptian mathematical work, includes a mathematical table for converting rational numbers of the form 2/n into Egyptian fractions (sums of distinct unit fractions), the form the Egyptians used to write fractional numbers. The text describes the representation of 50 rational numbers. It was written during the Second Intermediate Period of Egypt (approximately 1650–1550 BCE) [3] by Ahmes, the first writer of mathematics whose name is known. Aspects of the document may have been copied from an unknown 1850 BCE text.
The following table gives the expansions listed in the papyrus.
2/3 = 1/2 + 1/6 | 2/5 = 1/3 + 1/15 | 2/7 = 1/4 + 1/28 |
2/9 = 1/6 + 1/18 | 2/11 = 1/6 + 1/66 | 2/13 = 1/8 + 1/52 + 1/104 |
2/15 = 1/10 + 1/30 | 2/17 = 1/12 + 1/51 + 1/68 | 2/19 = 1/12 + 1/76 + 1/114 |
2/21 = 1/14 + 1/42 | 2/23 = 1/12 + 1/276 | 2/25 = 1/15 + 1/75 |
2/27 = 1/18 + 1/54 | 2/29 = 1/24 + 1/58 + 1/174 + 1/232 | 2/31 = 1/20 + 1/124 + 1/155 |
2/33 = 1/22 + 1/66 | 2/35 = 1/30 + 1/42 | 2/37 = 1/24 + 1/111 + 1/296 |
2/39 = 1/26 + 1/78 | 2/41 = 1/24 + 1/246 + 1/328 | 2/43 = 1/42 + 1/86 + 1/129 + 1/301 |
2/45 = 1/30 + 1/90 | 2/47 = 1/30 + 1/141 + 1/470 | 2/49 = 1/28 + 1/196 |
2/51 = 1/34 + 1/102 | 2/53 = 1/30 + 1/318 + 1/795 | 2/55 = 1/30 + 1/330 |
2/57 = 1/38 + 1/114 | 2/59 = 1/36 + 1/236 + 1/531 | 2/61 = 1/40 + 1/244 + 1/488 + 1/610 |
2/63 = 1/42 + 1/126 | 2/65 = 1/39 + 1/195 | 2/67 = 1/40 + 1/335 + 1/536 |
2/69 = 1/46 + 1/138 | 2/71 = 1/40 + 1/568 + 1/710 | 2/73 = 1/60 + 1/219 + 1/292 + 1/365 |
2/75 = 1/50 + 1/150 | 2/77 = 1/44 + 1/308 | 2/79 = 1/60 + 1/237 + 1/316 + 1/790 |
2/81 = 1/54 + 1/162 | 2/83 = 1/60 + 1/332 + 1/415 + 1/498 | 2/85 = 1/51 + 1/255 |
2/87 = 1/58 + 1/174 | 2/89 = 1/60 + 1/356 + 1/534 + 1/890 | 2/91 = 1/70 + 1/130 |
2/93 = 1/62 + 1/186 | 2/95 = 1/60 + 1/380 + 1/570 | 2/97 = 1/56 + 1/679 + 1/776 |
2/99 = 1/66 + 1/198 | 2/101 = 1/101 + 1/202 + 1/303 + 1/606 |
This part of the Rhind Mathematical Papyrus was spread over nine sheets of papyrus. [4]
Any rational number has infinitely many different possible expansions as a sum of unit fractions, and since the discovery of the Rhind Mathematical Papyrus mathematicians have struggled to understand how the ancient Egyptians might have calculated the specific expansions shown in this table.
Suggestions by Gillings included five different techniques. Problem 61 in the Rhind Mathematical Papyrus gives one formula:
Other possible formulas are: [6]
Ahmes was suggested to have converted 2/p (where p was a prime number) by two methods, and three methods to convert 2/pq composite denominators. [6] Others have suggested only one method was used by Ahmes which used multiplicative factors similar to least common multiples. A detailed and simple explanation of how the 2/p table may have been decomposed was provided by Abdulrahman Abdulaziz. [7]
An older ancient Egyptian papyrus contained a similar table of Egyptian fractions; the Lahun Mathematical Papyri, written around 1850 BCE, is about the age of one unknown source for the Rhind papyrus. The Kahun 2/n fractions were identical to the fraction decompositions given in the Rhind Papyrus' 2/n table. [8]
The Egyptian Mathematical Leather Roll (EMLR), circa 1900 BCE, lists decompositions of fractions of the form 1/n into other unit fractions. The table consisted of 26 unit fraction series of the form 1/n written as sums of other rational numbers. [9]
The Akhmim wooden tablet wrote difficult fractions of the form 1/n (specifically, 1/3, 1/7, 1/10, 1/11 and 1/13) in terms of Eye of Horus fractions which were fractions of the form 1/2k and remainders expressed in terms of a unit called ro. The answers were checked by multiplying the initial divisor by the proposed solution and checking that the resulting answer was 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 5 ro, which equals 1. [10]
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction is an operation that consists of expressing the fraction as a sum of a polynomial and one or several fractions with a simpler denominator.
An Egyptian fraction is a finite sum of distinct unit fractions, such as That is, each fraction in the expression has a numerator equal to 1 and a denominator that is a positive integer, and all the denominators differ from each other. The value of an expression of this type is a positive rational number ; for instance the Egyptian fraction above sums to . Every positive rational number can be represented by an Egyptian fraction. Sums of this type, and similar sums also including and as summands, were used as a serious notation for rational numbers by the ancient Egyptians, and continued to be used by other civilizations into medieval times. In modern mathematical notation, Egyptian fractions have been superseded by vulgar fractions and decimal notation. However, Egyptian fractions continue to be an object of study in modern number theory and recreational mathematics, as well as in modern historical studies of ancient mathematics.
Proofs of the mathematical result that the rational number 22/7 is greater than π (pi) date back to antiquity. One of these proofs, more recently developed but requiring only elementary techniques from calculus, has attracted attention in modern mathematics due to its mathematical elegance and its connections to the theory of Diophantine approximations. Stephen Lucas calls this proof "one of the more beautiful results related to approximating π". Julian Havil ends a discussion of continued fraction approximations of π with the result, describing it as "impossible to resist mentioning" in that context.
In geometry, a Heronian triangle is a triangle whose side lengths a, b, and c and area A are all positive integers. Heronian triangles are named after Heron of Alexandria, based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84.
The system of ancient Egyptian numerals was used in Ancient Egypt from around 3000 BC until the early first millennium AD. It was a system of numeration based on multiples of ten, often rounded off to the higher power, written in hieroglyphs. The Egyptians had no concept of a positional notation such as the decimal system. The hieratic form of numerals stressed an exact finite series notation, ciphered one-to-one onto the Egyptian alphabet.
Ancient Egyptian mathematics is the mathematics that was developed and used in Ancient Egypt c. 3000 to c. 300 BCE, from the Old Kingdom of Egypt until roughly the beginning of Hellenistic Egypt. The ancient Egyptians utilized a numeral system for counting and solving written mathematical problems, often involving multiplication and fractions. Evidence for Egyptian mathematics is limited to a scarce amount of surviving sources written on papyrus. From these texts it is known that ancient Egyptians understood concepts of geometry, such as determining the surface area and volume of three-dimensional shapes useful for architectural engineering, and algebra, such as the false position method and quadratic equations.
In number theory, a practical number or panarithmic number is a positive integer such that all smaller positive integers can be represented as sums of distinct divisors of . For example, 12 is a practical number because all the numbers from 1 to 11 can be expressed as sums of its divisors 1, 2, 3, 4, and 6: as well as these divisors themselves, we have 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1, and 11 = 6 + 3 + 2.
A fraction represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, three-quarters. A common, vulgar, or simple fraction consists of an integer numerator, displayed above a line, and a non-zero integer denominator, displayed below that line. If these integers are positive, then the numerator represents a number of equal parts, and the denominator indicates how many of those parts make up a unit or a whole. For example, in the fraction 3/4, the numerator 3 indicates that the fraction represents 3 equal parts, and the denominator 4 indicates that 4 parts make up a whole. The picture to the right illustrates 3/4 of a cake.
The Erdős–Straus conjecture is an unproven statement in number theory. The conjecture is that, for every integer that is 2 or more, there exist positive integers , , and for which In other words, the number can be written as a sum of three positive unit fractions.
The Moscow Mathematical Papyrus, also named the Golenishchev Mathematical Papyrus after its first non-Egyptian owner, Egyptologist Vladimir Golenishchev, is an ancient Egyptian mathematical papyrus containing several problems in arithmetic, geometry, and algebra. Golenishchev bought the papyrus in 1892 or 1893 in Thebes. It later entered the collection of the Pushkin State Museum of Fine Arts in Moscow, where it remains today.
In mathematics, ancient Egyptian multiplication, one of two multiplication methods used by scribes, is a systematic method for multiplying two numbers that does not require the multiplication table, only the ability to multiply and divide by 2, and to add. It decomposes one of the multiplicands into a set of numbers of powers of two and then creates a table of doublings of the second multiplicand by every value of the set which is summed up to give result of multiplication.
The Egyptian Mathematical Leather Roll (EMLR) is a 10 × 17 in (25 × 43 cm) leather roll purchased by Alexander Henry Rhind in 1858. It was sent to the British Museum in 1864, along with the Rhind Mathematical Papyrus, but it was not chemically softened and unrolled until 1927 (Scott, Hall 1927).
The Reisner Papyri date to the reign of Senusret I, who was king of ancient Egypt in the 19th century BCE. The documents were discovered by G.A. Reisner during excavations in 1901–04 in Naga ed-Deir in southern Egypt. A total of four papyrus rolls were found in a wooden coffin in a tomb.
The Rhind Mathematical Papyrus is one of the best known examples of ancient Egyptian mathematics.
In mathematics, a Størmer number or arc-cotangent irreducible number is a positive integer for which the greatest prime factor of is greater than or equal to . They are named after Carl Størmer.
Seked is an ancient Egyptian term describing the inclination of the triangular faces of a right pyramid. The system was based on the Egyptians' length measure known as the royal cubit. It was subdivided into seven palms, each of which was sub-divided into four digits.
The Lahun Mathematical Papyri is an ancient Egyptian mathematical text. It forms part of the Kahun Papyri, which was discovered at El-Lahun by Flinders Petrie during excavations of a workers' town near the pyramid of the Twelfth Dynasty pharaoh Sesostris II. The Kahun Papyri are a collection of texts including administrative texts, medical texts, veterinarian texts and six fragments devoted to mathematics.
Egyptian geometry refers to geometry as it was developed and used in Ancient Egypt. Their geometry was a necessary outgrowth of surveying to preserve the layout and ownership of farmland, which was flooded annually by the Nile river.
In the history of mathematics, Egyptian algebra, as that term is used in this article, refers to algebra as it was developed and used in ancient Egypt. Ancient Egyptian mathematics as discussed here spans a time period ranging from c. 3000 BCE to c. 300 BCE.
Mathematics in Ancient Egypt: A Contextual History is a book on ancient Egyptian mathematics by Annette Imhausen. It was published by the Princeton University Press in 2016.