This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations .(August 2016) |
SBB-CFF-FFS Be 3/5 | |||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
|
The Be 3/5 11201 was one of four test locomotives ordered by the Schweizerischen Bundesbahnen (Swiss Federal Railways) (SBB) in June 1917. Intended to provide experience with electric traction, the locomotive was intended, along with Be 4/6 12301, Be 4/6 12302 and Ce 6/8I14201, to be used on services on the Gotthardbahn (Gotthard railway). The Be 3/5 was something of a stopgap offered by Maschinenfabrik Oerlikon (MFO) because they felt that the requirements required for the Gotthard Railway could not be fulfilled at the time. As the MFO did not feel that it could produce a freight locomotive with six drive-axles, a smaller version of the BLS Be 5/7 was offered. This meant that the locomotive did not fulfil the SBB specifications for the Gotthard line; it was too weak and, compared with the A 3/5 steam locomotives, too slow. However, due to a lack of available stock, the railway still took delivery of the locomotive, a decision later proved correct by the long operational life and reliability of the Be 3/5.
In November 1913 the executive board of the Schweizerischen Bundesbahnen (Swiss Federal Railways) (SBB) decided to electrify the Gotthardbahn (Gotthard railway) from Erstfeld to Biasca, but this was not effected immediately. The main impetus was the coal shortage caused by World War One. Due to a lack of fuel, the SBB had to reduce schedules more and more and, by autumn 1918, on Sundays only milk trains were running. Following the conflict, the SBB electrified, along with other important lines, the Gotthard railway line, completing this in 1920. To serve those lines the SBB urgently needed passenger and freight locomotives.
The SBB required locomotives from the industry which complied with these requirements:
Maschinenfabrik Oerlikon (MFO) was commissioned to design and construct a freight locomotive that met these requirements and was given great freedom in their design. At it transpired, the locomotive from MFO did not comply with the requirements specifications at all. Nevertheless, the SBB took over the locomotive.
The running gear consisted of three drive-axles mounted in the locomotive frame. The center drive-axle had a side-play of 2× 25 mm (0.984 in). The two idle-axles were mounted in Bissel trucks which were fixed to the frame. Those axles had a side-play of 2× 80 mm (3.15 in).
The tractive force was transmitted from the drive-axles to the frame. From there the force was carried over to the towing hook and the buffers.
The two motors were mounted in half height in the locomotive frame. Those two motors drove big cogwheels over sprockets spring-loaded on both sides. Each of those big cogwheels drove a jackshaft. The two jackshafts drove a shared slit coupling rod which drove – over a vertical crosshead – the crank pin of the center drive-axle. Side rods connected to the slit coupling rod transmitted the force to the outer drive-wheels.
This drive concept was later used at the Ae 3/6 II.
The locomotive body consisted of a frame built up with 25 mm (0.984 in) thick steel plates. On this frame the body was mounted with a cab at each end. The towing hook and the buffers were fixed to an abutment beam which was mounted to the frame.
The electrical part was – in its arrangement – taken over from the Be 5/7 of the BLS. It consisted of a diamond-shaped pantograph, a circuit breaker for isolating the respective pantograph, lightning protection inductor and one more circuit breaker for isolating one half of the locomotive. All those components were mounted on the roof. The oil operated main switch was located in the locomotive body. The locomotive driver operated the switch via electric valves located in both cabs. It was also possible to operate the switch mechanically using a rod system. Finally it was possible to operate the main switch directly by using a wrench.
The two transformers were – unusually for the SBB – air ventilated. The design was the same as the Be 5/7 of the BLS. The switches were fixed to the transformers. The connection to the respective voltage steps was executed with contact camshafts. The switching process was started with special spark-extinguishing camshafts. The step switch used compressed air and had 12 steps. Since the two switches were operated alternatively, this meant that 23 steps were required which meant that the switching time was very slow. To operate the step switches, the locomotive driver had to turn a vertical crank handle once for each step. It was possible to shut off power by running down both step switches with a special handle.
The electropneumatical reverse switches were attached on the motors. A group switch was mounted by them which had to execute the following actions in case of a failure:
In 1929 the delicate step switches were replaced by two hopper switches. The old controllers were at the same time exchanged to normal controllers with horizontal hand wheels.
The locomotive consisted of the following 100 V operated auxiliary systems:
The two old compressors were upgraded later to a modern MFO-compressor, which ran with the later auxiliary systems voltage of 220 V.
The train heating system was fed over a separate oil propulsed main switch with 1000 V. This installation was later replaced by a separate heating transformer. The oil powered main switch was replaced by a heating hopper.
The SBB requirement requested an electrical brake. This brake was shown in the blueprints but only in dashed lines and therefore not mounted in the locomotive. This brake was never upgraded because this "stopgap" locomotive was never used for services on the Gotthard railway line.
The locomotive was equipped with multiple-unit control. The idea behind this was to lead a 425 t-train on the adjacent lines with low gradient using a Be 4/6 and then boosting it up for the steep gradients at the gotthard railway line using a Be 3/5. The idea of operating the train with one locomotive driver on the leading locomotive was definitely plausible. But the problem was, that for driving back the locomotive to the starting point another locomotive driver was needed. It is unknown if the multiple-unit control ever was tested.
This section is empty. You can help by adding to it. (January 2013) |
The locomotive was delivered at 16 April 1919. She was assigned – as were all the test locomotives – to the Bern depot. From Bern the machine pulled trains of all types up to Spiez. In the year of delivery, it travelled a remarkable 65,000 km. But that was a performance the Be 3/5 never achieved again.
By 1923 the locomotive was assigned to the Zürich depot, pulling commuter trains and travelling approximately 10,000–20,000 km per year. In March 1928 she was relocated to the Luzern depot. There she replaced the Be 2/5 11001 operating from Zug in the triangle Zug – Lucerne – Arth-Goldau with any kind of trains.
Up to 1934 the maintenance shop of Zurich was responsible for the care of the locomotive. Later the responsibility went over to the maintenance shop of Yverdon. This shop warned the Traction and Maintenance Department of the SBB in Bern 1942 that the commutators of the motors were almost fully worn. In the same time Yverdon remarked that a replacement of the winding of the transformers was necessary. Since the locomotive did not require a very extensive maintenance effort compared with other locomotives the Lucerne depot did not consider the call as dramatic.
In September 1950 the commutators had to be replaced in a very costly repair during which a screw fell into the gear which led to such damage that the Yverdon shops requested the locomotive be retired in 1957. Bern, however, again ordered the locomotive repaired, which it was, although it needed more repair when a transformer burned in 1958.
Even after a collision at 13 August 1959 in Rotkreuz the Be 3/5 was not discarded. The locomotive was then equipped as heating locomotive to heat up coaches before their use and retired from line and switching services.
From 1963 the Be 3/5 was used as an auxiliary car locomotive, heating locomotive, depot transformer and compressed-air donor. In 1968 it was equipped with cross-ties and was used as a dummy-object for the rerailing crew of the Lausanne depot. In November 1973 the locomotive was scrapped in Yverdon.
Swiss Federal Railways is the national railway company of Switzerland.
Crocodile electric locomotives are so called because they have long "noses" at each end, reminiscent of the snout of a crocodile. These contain the motors and drive axles, and are connected by an articulated center section. The center section usually contains the crew compartments, pantographs and transformer.
The DB Class 101 is a class of three-phase electric locomotives built by Adtranz and operated by DB Fernverkehr in Germany. 145 locomotives were built between 1996 and 1999 to replace the 30-year-old and aging Class 103 as the flagship of the Deutsche Bahn, primarily hauling Intercity services. This class encompasses the latest generation of locomotives of the Deutsche Bahn.
Alstom Traxx is a modular product platform of mainline diesel-electric and electric locomotives. It was produced originally by Bombardier Transportation and later Alstom, and was built in both freight and passenger variants. The first version was a dual-voltage AC locomotive built for German railways from the year 2000. Later types included DC versions, as well as quadruple-voltage machines, able to operate on most European electrification schemes: 1.5/3.0 kV DC and 15/25 kV AC. The family was expanded in 2006 to include diesel-powered versions. Elements common to all variants include steel bodyshells, two bogies with two powered axles each, three-phase asynchronous induction motors, cooling exhausts on the roof edges, and wheel disc brakes.
The Re 620, Re 6/6 in the old numbering scheme, are six-axle, electric locomotives of the SBB-CFF-FFS, which were acquired as a replacement for the Ae 6/6 for heavy services on the Gotthardbahn. They are the most modern of the so-called "Gotthard locomotives".
For more than a century, the Swiss locomotive, multiple unit, motor coach and railcar classification system, in either its original or updated forms, has been used to name and classify the rolling stock operated on the railways of Switzerland. It started out as a uniform system for the classification and naming of all rolling stock, powered and unpowered, but had been replaced and amended by the UIC classification of goods wagons.
The Ae 4/7 was a universal locomotive of the Swiss Federal Railways, employing the so-called Buchli drive.
The Ae 4/8 was a prototype locomotive of the Schweizerischen Bundesbahnen (SBB) for the testing of electrical operation. The locomotive was equipped with two different drives, therefore acquiring the nickname Bastard. Because of its three-part locomotive body it also acquired the nickname Tatzelwurm.
The Be 4/6 12301 was one of four test locomotives ordered by the Schweizerische Bundesbahnen (SBB) in June 1917. For gaining experience for ordering electrical locomotives this locomotive should – as her three sisters Be 3/5 12201, Be 4/6 12302 and Ce 6/8I14201 – have been used for services on the Gotthardbahn. The Be 4/6 12301 was the alternative design of MFO for a fast train locomotive for the Gotthard railway line. She was designed and built according to the requirement specifications of the SBB. But – except for occasional trips to the maintenance shop of Bellinzona – did not appear on the Gotthard railway line. The design was intrinsically reliable. The locomotive operated for 44 years in very various services. The locomotive drivers liked the locomotive because her driving behaviour was very smooth even at top speed. But technically the locomotive was much more complicated than their sisters Be 4/6 12302 and Be 4/6 12303-12342.
The Be 4/6 12302 was one of four test locomotives ordered by the Schweizerische Bundesbahnen (SBB) in June 1917, along with the Be 3/5 12201, Be 4/6 12301 and Ce 6/8I14201. It was intended to be used on the Gotthardbahn, in order to gain experience in ordering and operating electric locomotives, However, the Be 4/6 12302 was never used for scheduled services on the Gotthard, because at its introduction it was already outperformed by the successor class Be 4/6 12303-12342.
The Ce 6/8 I 14201 was one of four test locomotives ordered by the Schweizerischen Bundesbahnen (SBB) in June 1917. For gaining experience for ordering electrical locomotives this locomotive should – as its three siblings Be 3/5 12201, Be 4/6 12301 and Be 4/6 12302 – have been used for services on the Gotthardbahn. The development of freight locomotives subsequently took a completely different way which was not conceivable at the ordering date. The Ce 6/8I came into service only after the first Ce 6/8II.
The SBB-CFF-FFS Ae 8/14 is a class of electric locomotives built for Swiss Federal Railways to be used on the Gotthard railway. Only three prototype engines were built between 1931 and 1938, each of them in a different design.
The Be 4/6 was a bogie locomotive operated by the Schweizerischen Bundesbahnen (SBB) on the Gotthard Railway along with the Be 3/5, The design was based on the prototype Be 4/6 12302.
The Swiss locomotive class Ae 4/6 was a class of electric locomotives. They were intended as a powerful locomotive for the steep gradients of the Gotthard Railway, but smaller than the huge 'double locomotives' which had previously been tested there. They were built from 1941, during World War II, and although Switzerland remained neutral through this, material shortages led to some quality problems with these locomotives.
The Seebach-Wettingen railway electrification trial (1905-1909) was an important milestone in the development of electric railways. Maschinenfabrik Oerlikon (MFO) demonstrated the suitability of single-phase alternating current at high voltage for long-distance railway operation with the Seebach-Wettingen single-phase alternating current test facility. For this purpose, MFO electrified the 19.45-kilometre-long Swiss Federal Railways (SBB) route from Seebach to Wettingen at its own expense with single-phase alternating current at 15,000 volts.
Midi E 3301 was a prototype electric locomotive of Class E 3300 designed for the Chemins de fer du Midi, France. Because of poor performance, it was refused by the Compagnie du Midi and was re-deployed to Swiss railways. On 1 May 1919, it was classified Fb 2/5 11001 and, in 1920, it became experimental locomotive Be 2/5 11001 of the Swiss Federal Railways (SBB).
The Ce 6/6 was an electric locomotive operated by Schweizerischen Bundesbahnen (SBB). Originally ordered from Siemens-Schuckert by Malmbanen in Sweden as Fc 2x3 / 3 in 1912, the locomotive was not delivered due to World War I and was instead bought by SBB in 1919.
The Great Northern Z-1 was a class of ten electric locomotives built for the Great Northern Railway They were used to work the route through the second Cascade Tunnel. They were built between 1926–1928 by Baldwin Locomotive Works, with Westinghouse electrics, and stayed in service until dieselisation in 1956. Each was of 1,830 horsepower (1,360 kW) with a 1-D-1 wheel arrangement, although they were always used in coupled pairs.
Rigid-framed electric locomotives were some of the first generations of electric locomotive design. When these began the traction motors of these early locomotives, particularly with AC motors, were too large and heavy to be mounted directly to the axles and so were carried on the frame. One of the initial simplest wheel arrangements for a mainline electric locomotive, from around 1900, was the 1′C1′ arrangement, in UIC classification.
The Flamatt–Laupen–Gümmenen railway line is a line in Switzerland that was built and formerly operated by the Sense Valley Railway. The 11.5 km-long standard-gauge line on the Flamatt–Laupen–Gümmenen route through the Sense valley was opened on 20 January 1904. The shares of the company were acquired by the Swiss Federal Railways (SBB) and Swiss Post (34 %) in 2001. Since then, the infrastructure of the Sense Valley Railway has been operated by the SBB under contract.