Scientific demonstration

Last updated

A scientific demonstration is a procedure carried out for the purposes of demonstrating scientific principles, rather than for hypothesis testing or knowledge gathering (although they may originally have been carried out for these purposes).

Contents

Most scientific demonstrations are simple laboratory demonstrations intended to demonstrate physical principles, often in a surprising or entertaining way. They are carried out in schools and universities, and sometimes in public demonstrations in popular science lectures and TV programs aimed at the public. Many scientific demonstrations are chosen for their combination of educational merit and entertainment value, which is often provided by dramatic phenomena such as explosions.

Public scientific demonstrations were a common occurrence in the Age of Enlightenment, and have long been a feature of the British Royal Institution Christmas Lectures, which date back to 1825. In the television era, scientific demonstrations have featured in science-related entertainment shows such as MythBusters and Brainiac: Science Abuse .

Examples

Some famous scientific demonstrations include:

Note: many scientific demonstrations are potentially dangerous, and should not be attempted without considerable laboratory experience and appropriate safety precautions. Many older well-known scientific demonstrations, once mainstays of science education, are now effectively impossible to demonstrate to an audience without breaking health and safety laws. Some older demonstrations, such as allowing the audience to play with liquid mercury, are sufficiently dangerous that they should not be attempted by anyone under any circumstances.

See also

Related Research Articles

<span class="mw-page-title-main">Analog computer</span> Computer that uses continuously variable technology

An analog computer or analogue computer is a type of computer that uses the continuous variation aspect of physical phenomena such as electrical, mechanical, or hydraulic quantities to model the problem being solved. In contrast, digital computers represent varying quantities symbolically and by discrete values of both time and amplitude.

<span class="mw-page-title-main">Engineering</span> Applied science

Engineering is the use of scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings. The discipline of engineering encompasses a broad range of more specialized fields of engineering, each with a more specific emphasis on particular areas of applied mathematics, applied science, and types of application. See glossary of engineering.

<span class="mw-page-title-main">History of physics</span> Historical development of physics

Physics is a branch of science whose primary objects of study are matter and energy. Discoveries of physics find applications throughout the natural sciences and in technology. Physics today may be divided loosely into classical physics and modern physics.

<span class="mw-page-title-main">Scientific method</span> Interplay between observation, experiment and theory in science

The scientific method is an empirical method for acquiring knowledge that has characterized the development of science since at least the 17th century It involves careful observation, applying rigorous skepticism about what is observed, given that cognitive assumptions can distort how one interprets the observation. It involves formulating hypotheses, via induction, based on such observations; the testability of hypotheses, experimental and the measurement-based statistical testing of deductions drawn from the hypotheses; and refinement of the hypotheses based on the experimental findings. These are principles of the scientific method, as distinguished from a definitive series of steps applicable to all scientific enterprises.

<span class="mw-page-title-main">Camera obscura</span> Optical device

A camera obscura is a darkened room with a small hole or lens at one side through which an image is projected onto a wall or table opposite the hole.

<span class="mw-page-title-main">Cellular automaton</span> Discrete model studied in computer science

A cellular automaton is a discrete model of computation studied in automata theory. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessellation structures, and iterative arrays. Cellular automata have found application in various areas, including physics, theoretical biology and microstructure modeling.

<span class="mw-page-title-main">Antikythera mechanism</span> Ancient analogue astronomical computer

The Antikythera mechanism is an Ancient Greek hand-powered orrery, described as the oldest known example of an analogue computer used to predict astronomical positions and eclipses decades in advance. It could also be used to track the four-year cycle of athletic games which was similar to an Olympiad, the cycle of the ancient Olympic Games.

<span class="mw-page-title-main">Automaton</span> Self-operating machine

An automaton is a relatively self-operating machine, or control mechanism designed to automatically follow a sequence of operations, or respond to predetermined instructions. Some automata, such as bellstrikers in mechanical clocks, are designed to give the illusion to the casual observer that they are operating under their own power. Since long ago, the term is commonly associated with automated puppets that resemble moving humans or animals, built to impress and/or to entertain people.

<span class="mw-page-title-main">Léon Foucault</span> French physicist

Jean Bernard Léon Foucault was a French physicist best known for his demonstration of the Foucault pendulum, a device demonstrating the effect of Earth's rotation. He also made an early measurement of the speed of light, discovered eddy currents, and is credited with naming the gyroscope.

Benjamin Robins was a pioneering British scientist, Newtonian mathematician, and military engineer.

The timeline below shows the date of publication of major scientific experiments:

<span class="mw-page-title-main">Science in classical antiquity</span> Aspect of history

Science in classical antiquity encompasses inquiries into the workings of the world or universe aimed at both practical goals as well as more abstract investigations belonging to natural philosophy. Classical antiquity is traditionally defined as the period between 8th century BC and the 6th century AD, and the ideas regarding nature that were theorized during this period were not limited to science but included myths as well as religion. Those who are now considered as the first scientists may have thought of themselves as natural philosophers, as practitioners of a skilled profession, or as followers of a religious tradition. Some of the more widely known figures active in this period include Hippocrates, Aristotle, Euclid, Archimedes, Hipparchus, Galen, and Ptolemy. Their contributions and commentaries spread throughout the Eastern, Islamic, and Latin worlds and contributed to the birth of modern science. Their works covered many different categories including mathematics, cosmology, medicine, and physics.

The Bakerian Medal is one of the premier medals of the Royal Society that recognizes exceptional and outstanding science. It comes with a medal award and a prize lecture. The medalist is required to give a lecture on any topic related to physical sciences. It is awarded annually to individuals in the field of physical sciences, including computer science.

The Antikythera wreck is a Roman-era shipwreck dating from the second quarter of the first century BC.

Machine – mechanical system that provides the useful application of power to achieve movement. A machine consists of a power source, or engine, and a mechanism or transmission for the controlled use of this power. The combination of force and movement, known as power, is an important characteristic of a machine.

<span class="mw-page-title-main">Iatrophysics</span> Medical application of physics

Iatrophysics or iatromechanics is the medical application of physics. It provides an explanation for medical practices with mechanical principles. It was a school of medicine in the seventeenth century which attempted to explain physiological phenomena in mechanical terms. Believers of iatromechanics thought that physiological phenomena of the human body followed the laws of physics. It was related to iatrochemistry in studying the human body in a systematic manner based on observations from the natural world though it had more emphasis on mathematical models rather than chemical processes.

<span class="mw-page-title-main">Science in the Age of Enlightenment</span>

The history of science during the Age of Enlightenment traces developments in science and technology during the Age of Reason, when Enlightenment ideas and ideals were being disseminated across Europe and North America. Generally, the period spans from the final days of the 16th and 17th-century Scientific Revolution until roughly the 19th century, after the French Revolution (1789) and the Napoleonic era (1799–1815). The scientific revolution saw the creation of the first scientific societies, the rise of Copernicanism, and the displacement of Aristotelian natural philosophy and Galen's ancient medical doctrine. By the 18th century, scientific authority began to displace religious authority, and the disciplines of alchemy and astrology lost scientific credibility.

<span class="mw-page-title-main">History of engineering</span> Aspect of history

The concept of engineering has existed since ancient times as humans devised fundamental inventions such as the pulley, lever, and wheel. Each of these inventions is consistent with the modern definition of engineering, exploiting basic mechanical principles to develop useful tools and objects.

<span class="mw-page-title-main">Michael T. Wright</span>

Michael T. Wright, FSA was formerly a curator of mechanical engineering at the Science Museum and later at Imperial College in London, England. He is known for his analysis of the original fragments of the Antikythera mechanism and for the reconstruction of this Ancient Greek brass mechanism.

References

  1. "Political Ensembles. By G. Little. (Pp. 223; illustrated; £17.50.) Oxford University Press: Oxford. 1985. - Religion in Context. By I. M. Lewis. (Pp. 139; illustrated; £6.95 pb.) Cambridge University Press: Cambridge. 1986". Psychological Medicine. 17 (4): 1023–1023. November 1987. doi:10.1017/s0033291700001057. ISSN   0033-2917.