Scram (disambiguation)

Last updated

Scram (or SCRAM) is an emergency shutdown of a nuclear reactor or a complex operation.

Contents

Scram or SCRAM may also refer to:

Arts, entertainment, and media

People

Technology

See also

Related Research Articles

<span class="mw-page-title-main">Project Pluto</span> US nuclear ramjet project, 1957–1964

Project Pluto was a United States government program to develop nuclear-powered ramjet engines for use in cruise missiles. Two experimental engines were tested at the Nevada Test Site (NTS) in 1961 and 1964 respectively.

<span class="mw-page-title-main">Nuclear meltdown</span> Severe nuclear reactor accident that results in core damage from overheating

A nuclear meltdown is a severe nuclear reactor accident that results in core damage from overheating. The term nuclear meltdown is not officially defined by the International Atomic Energy Agency or by the United States Nuclear Regulatory Commission. It has been defined to mean the accidental melting of the core of a nuclear reactor, however, and is in common usage a reference to the core's either complete or partial collapse.

In computer security, challenge–response authentication is a family of protocols in which one party presents a question ("challenge") and another party must provide a valid answer ("response") to be authenticated.

<span class="mw-page-title-main">Scram</span> Emergency shutdown of a nuclear reactor

A scram or SCRAM is an emergency shutdown of a nuclear reactor effected by immediately terminating the fission reaction. It is also the name that is given to the manually operated kill switch that initiates the shutdown. In commercial reactor operations, this type of shutdown is often referred to as a "scram" at boiling water reactors (BWR), a "reactor trip" at pressurized water reactors and at a CANDU reactor. In many cases, a scram is part of the routine shutdown procedure, which serves to test the emergency shutdown system.

Simple Authentication and Security Layer (SASL) is a framework for authentication and data security in Internet protocols. It decouples authentication mechanisms from application protocols, in theory allowing any authentication mechanism supported by SASL to be used in any application protocol that uses SASL. Authentication mechanisms can also support proxy authorization, a facility allowing one user to assume the identity of another. They can also provide a data security layer offering data integrity and data confidentiality services. DIGEST-MD5 provides an example of mechanisms which can provide a data-security layer. Application protocols that support SASL typically also support Transport Layer Security (TLS) to complement the services offered by SASL.

<span class="mw-page-title-main">Limerick Generating Station</span> Nuclear power plant in Montgomery County, Pennsylvania, US

The Limerick Generating Station in Pennsylvania is located next to the Schuylkill River in Limerick Township, Montgomery County, northwest of Philadelphia. The facility has two General Electric boiling water reactor (BWR) units, cooled by natural draft cooling towers. The two units are capable of producing over 2,200 megawatts of power, which combined would provide electricity to over 2 million households. Constellation Energy owns and operates this facility following separation from Exelon Corporation in 2022. With the exception of refueling outages, Limerick Generating Station always operates at 100% power. The plant is connected to the grid by several 500kv transmission lines.

A mission critical factor of a system is any factor that is essential to business operation or to an organization. Failure or disruption of mission critical factors will result in serious impact on business operations or upon an organization, and even can cause social turmoil and catastrophes.

Passive nuclear safety is a design approach for safety features, implemented in a nuclear reactor, that does not require any active intervention on the part of the operator or electrical/electronic feedback in order to bring the reactor to a safe shutdown state, in the event of a particular type of emergency. Such design features tend to rely on the engineering of components such that their predicted behaviour would slow down, rather than accelerate the deterioration of the reactor state; they typically take advantage of natural forces or phenomena such as gravity, buoyancy, pressure differences, conduction or natural heat convection to accomplish safety functions without requiring an active power source. Many older common reactor designs use passive safety systems to a limited extent, rather, relying on active safety systems such as diesel powered motors. Some newer reactor designs feature more passive systems; the motivation being that they are highly reliable and reduce the cost associated with the installation and maintenance of systems that would otherwise require multiple trains of equipment and redundant safety class power supplies in order to achieve the same level of reliability. However, weak driving forces that power many passive safety features can pose significant challenges to effectiveness of a passive system, particularly in the short term following an accident.

<span class="mw-page-title-main">Pilgrim Nuclear Power Station</span> Decommissioning nuclear power plant located in Plymouth, Massachusetts

Pilgrim Nuclear Power Station (PNPS) is a decommissioned nuclear power plant in Massachusetts in the Manomet section of Plymouth on Cape Cod Bay, south of the tip of Rocky Point and north of Priscilla Beach. Like many similar plants, it was constructed by Bechtel, and was powered by a General Electric BWR 3 boiling water reactor inside of a Mark 1 pressure suppression type containment and generator. With a 690 MW production capacity, it produced about 14% of the electricity generated in Massachusetts.

Cram may refer to:

<span class="mw-page-title-main">Advanced boiling water reactor</span> Nuclear reactor design

The advanced boiling water reactor (ABWR) is a Generation III boiling water reactor. The ABWR is currently offered by GE Hitachi Nuclear Energy (GEH) and Toshiba. The ABWR generates electrical power by using steam to power a turbine connected to a generator; the steam is boiled from water using heat generated by fission reactions within nuclear fuel. Kashiwazaki-Kariwa unit 6 is considered the first Generation III reactor in the world.

RRR may refer to:

<i>Scram</i> (video game) Atari 8-bit nuclear reactor simulation game from 1981

Scram: A Nuclear Power Plant Simulation is an Atari 8-bit family game written by Chris Crawford and published by Atari, Inc. in 1981. Written in Atari BASIC, Scram uses differential equations to simulate nuclear reactor behavior. The player controls the valves and switches of the reactor directly with the joystick.

The Prototype Fast Breeder Reactor (PFBR) is a 500 MWe fast breeder nuclear reactor presently being constructed at the Madras Atomic Power Station (MAPS) in Kalpakkam, India. The Indira Gandhi Centre for Atomic Research (IGCAR) is responsible for the design of this reactor. The facility builds on the decades of experience gained from operating the lower power Fast Breeder Test Reactor (FBTR). Originally planned to be commissioned in 2010, the construction of the reactor suffered from multiple delays. As of December 2021, the Prototype Fast Breeder Reactor was at an integrated commissioning stage, with completion targeted for October 2022.

A reactor protection system (RPS) is a set of nuclear safety and security components in a nuclear power plant designed to safely shut down the reactor and prevent the release of radioactive materials. The system can "trip" automatically, or it can be tripped by the operators. Trips occurs when the parameters meet or exceed the limit setpoint. A trip of the RPS results in full insertion of all control rods and shutdown of the reactor.

Shutdown is the state of a nuclear reactor when the fission reaction is slowed significantly or halted completely. Different nuclear reactor designs have different definitions for what "shutdown" means, but it typically means that the reactor is not producing a measurable amount of electricity or heat, and is in a stable condition with very low reactivity.

<span class="mw-page-title-main">Maanshan Nuclear Power Plant</span> Nuclear power plant in Hengchun, Pingtung County, Taiwan

The Maanshan Nuclear Power Plant is a nuclear power plant located near South Bay, Hengchun, Pingtung County, Taiwan. The plant is Taiwan's third nuclear power plant and second-largest in generation capacity. The expected lifespan of this plant is 60 years.

In cryptography, the Salted Challenge Response Authentication Mechanism (SCRAM) is a family of modern, password-based challenge–response authentication mechanisms providing authentication of a user to a server. As it is specified for Simple Authentication and Security Layer (SASL), it can be used for password-based logins to services like SMTP and IMAP (e-mail), XMPP (chat), or MongoDB (database). For XMPP, supporting it is mandatory.

<span class="mw-page-title-main">Kilopower</span> NASA project aimed at producing a nuclear reactor for space

Kilopower is an experimental project aimed at producing new nuclear reactors for space travel. The project started in October 2015, led by NASA and the DoE’s National Nuclear Security Administration (NNSA). As of 2017, the Kilopower reactors were intended to come in four sizes, able to produce from one to ten kilowatts of electrical power (1-10 kWe) continuously for twelve to fifteen years. The fission reactor uses uranium-235 to generate heat that is carried to the Stirling converters with passive sodium heat pipes. In 2018, positive test results for the Kilopower Reactor Using Stirling Technology (KRUSTY) demonstration reactor were announced.

<span class="mw-page-title-main">Transient Reactor Test Facility</span>

The Transient Reactor Test Facility (TREAT) is an air-cooled, graphite moderated, thermal spectrum test nuclear reactor designed to test reactor fuels and structural materials. Constructed in 1958, and operated from 1959 until 1994, TREAT was built to conduct transient reactor tests where the test material is subjected to neutron pulses that can simulate conditions ranging from mild transients to reactor accidents. TREAT was designed by Argonne National Laboratory, and is located at the Idaho National Laboratory. Since original construction, the facility had additions or systems upgrades in 1963, 1972, 1982, and 1988. The 1988 addition was extensive, and included upgrades of most of the instrumentation and control systems.