Sector slipping

Last updated

Sector slipping is a technique used to deal with defective sectors in hard disk drives. Due to the volatility of hard disks from their moving parts and low tolerances, some sectors become defective. Defective sectors can even come on hard disks from the factory, so most disks incorporate a bad-block recovery system to help cope with these issues.

Contents

Description

During a low-level format, defect lists are populated, which store a list of bad sectors, which are then mapped and a sector slipping algorithm is utilized. When using sector slipping for bad sectors, disk access time is not largely affected. The drive will skip over a bad sector using the time it would have used to read it. Spare sectors are located on the disk to aid in having sectors to “slip” other sectors down to, allowing for the preservation of sequential ordering of the data. Accuracy of programs, reliant on static knowledge of cylinders and block positions will be compromised, however.

Bad sectors that are found during normal usage of the disk are not capable of having the sector slipping algorithm applied. Instead, a linear reallocation, or sector forwarding, is used where a bad sector is replaced with a sector from a spare area. Doing this affects the access times, as the disk will need to seek to the spare sector since all further lookups of the bad sector will redirect to the new sector.

Example

Logical Sectors         Physical Sectors Pre Low-Level Format          0                     0                                 1                     1                        2                     2                           3                     3                        4                     4                                   5                     5                                                                         6                                 7  Logical Sectors         Physical Sectors Post Low-Level Format          0       ------->      0         1       ------->      1         2       ------->      2                               3 (Bad)         3       ------->      4                               5 (Bad)         4       ------->      6         5       ------->      7   

In this example, physical sectors 3 and 5 were found to be bad. The sectors were then slipped down to allow for the logical sectors to be placed in sequential order on good sectors. Sector 3 was slipped down to 4 and sector 4 was slipped down to 6. The rest of the sectors were slipped down to the remaining spare sectors: Sector 4 to 6 and sector 5 to 7.

Related Research Articles

<span class="mw-page-title-main">Computer data storage</span> Storage of digital data readable by computers

Computer data storage or digital data storage is a technology consisting of computer components and recording media that are used to retain digital data. It is a core function and fundamental component of computers.

<span class="mw-page-title-main">Commodore 1581</span>

The Commodore 1581 is a 3½-inch double-sided double-density floppy disk drive that was released by Commodore Business Machines (CBM) in 1987, primarily for its C64 and C128 home/personal computers. The drive stores 800 kilobytes using an MFM encoding but formats different from the MS-DOS, Amiga, and Mac Plus formats. With special software it's possible to read C1581 disks on an x86 PC system, and likewise, read MS-DOS and other formats of disks in the C1581, provided that the PC or other floppy handles the "720 kB" size format. This capability was most frequently used to read MS-DOS disks. The drive was released in the summer of 1987 and quickly became popular with bulletin board system (BBS) operators and other users.

<span class="mw-page-title-main">Disk storage</span> General category of storage mechanisms

Disk storage is a data storage mechanism based on a rotating disk. The recording employs various electronic, magnetic, optical, or mechanical changes to the disk's surface layer. A disk drive is a device implementing such a storage mechanism. Notable types are hard disk drives (HDD), containing one or more non-removable rigid platters; the floppy disk drive (FDD) and its removable floppy disk; and various optical disc drives (ODD) and associated optical disc media.

<span class="mw-page-title-main">Hard disk drive</span> Electro-mechanical data storage device

A hard disk drive (HDD), hard disk, hard drive, or fixed disk is an electro-mechanical data storage device that stores and retrieves digital data using magnetic storage with one or more rigid rapidly rotating platters coated with magnetic material. The platters are paired with magnetic heads, usually arranged on a moving actuator arm, which read and write data to the platter surfaces. Data is accessed in a random-access manner, meaning that individual blocks of data can be stored and retrieved in any order. HDDs are a type of non-volatile storage, retaining stored data when powered off. Modern HDDs are typically in the form of a small rectangular box.

<span class="mw-page-title-main">SCSI</span> Set of computer and peripheral connection standards

Small Computer System Interface is a set of standards for physically connecting and transferring data between computers and peripheral devices, best known for its use with storage devices such as hard disk drives. SCSI was introduced in the 1980s and has seen widespread use on servers and high-end workstations, with new SCSI standards being published as recently as SAS-4 in 2017.

Universal Disk Format (UDF) is an open, vendor-neutral file system for computer data storage for a broad range of media. In practice, it has been most widely used for DVDs and newer optical disc formats, supplanting ISO 9660. Due to its design, it is very well suited to incremental updates on both write-once and re-writable optical media. UDF was developed and maintained by the Optical Storage Technology Association (OSTA).

RAID is a data storage virtualization technology that combines multiple physical disk drive components into one or more logical units for the purposes of data redundancy, performance improvement, or both. This is in contrast to the previous concept of highly reliable mainframe disk drives referred to as "single large expensive disk" (SLED).

Disk formatting is the process of preparing a data storage device such as a hard disk drive, solid-state drive, floppy disk, memory card or USB flash drive for initial use. In some cases, the formatting operation may also create one or more new file systems. The first part of the formatting process that performs basic medium preparation is often referred to as "low-level formatting". Partitioning is the common term for the second part of the process, dividing the device into several sub-devices and, in some cases, writing information to the device allowing an operating system to be booted from it. The third part of the process, usually termed "high-level formatting" most often refers to the process of generating a new file system. In some operating systems all or parts of these three processes can be combined or repeated at different levels and the term "format" is understood to mean an operation in which a new disk medium is fully prepared to store files. Some formatting utilities allow distinguishing between a quick format, which does not erase all existing data and a long option that does erase all existing data.

Wear leveling is a technique for prolonging the service life of some kinds of erasable computer storage media, such as flash memory, which is used in solid-state drives (SSDs) and USB flash drives, and phase-change memory. There are several wear leveling mechanisms that provide varying levels of longevity enhancement in such memory systems.

Logical block addressing (LBA) is a common scheme used for specifying the location of blocks of data stored on computer storage devices, generally secondary storage systems such as hard disk drives. LBA is a particularly simple linear addressing scheme; blocks are located by an integer index, with the first block being LBA 0, the second LBA 1, and so on.

<span class="mw-page-title-main">TRSDOS</span> Operating system for Tandy TRS-80 computers

TRSDOS is the operating system for the Tandy TRS-80 line of eight-bit Zilog Z80 microcomputers that were sold through Radio Shack from 1977 through 1991. Tandy's manuals recommended that it be pronounced triss-doss. TRSDOS should not be confused with Tandy DOS, a version of MS-DOS licensed from Microsoft for Tandy's x86 line of personal computers (PCs).

<span class="mw-page-title-main">Commodore DOS</span> Operating system

Commodore DOS, also known as CBM DOS, is the disk operating system used with Commodore's 8-bit computers. Unlike most other DOSes, which are loaded from disk into the computer's own RAM and executed there, CBM DOS is executed internally in the drive: the DOS resides in ROM chips inside the drive, and is run there by one or more dedicated MOS 6502 family CPUs. Thus, data transfer between Commodore 8-bit computers and their disk drives more closely resembles a local area network connection than typical disk/host transfers.

<span class="mw-page-title-main">Cylinder-head-sector</span> Historical method for giving addresses to physical data blocks on hard disk drives

Cylinder-head-sector (CHS) is an early method for giving addresses to each physical block of data on a hard disk drive.

In computing, data recovery is a process of retrieving deleted, inaccessible, lost, corrupted, damaged, or formatted data from secondary storage, removable media or files, when the data stored in them cannot be accessed in a usual way. The data is most often salvaged from storage media such as internal or external hard disk drives (HDDs), solid-state drives (SSDs), USB flash drives, magnetic tapes, CDs, DVDs, RAID subsystems, and other electronic devices. Recovery may be required due to physical damage to the storage devices or logical damage to the file system that prevents it from being mounted by the host operating system (OS).

INT 13h is shorthand for BIOS interrupt call 13hex, the 20th interrupt vector in an x86-based computer system. The BIOS typically sets up a real mode interrupt handler at this vector that provides sector-based hard disk and floppy disk read and write services using cylinder-head-sector (CHS) addressing. Modern PC BIOSes also include INT 13h extension functions, originated by IBM and Microsoft in 1992, that provide those same disk access services using 64-bit LBA addressing; with minor additions, these were quasi-standardized by Phoenix Technologies and others as the EDD BIOS extensions.

A bad sector in computing is a disk sector on a disk storage unit that is unreadable. Upon taking damage, all information stored on that sector is lost. When a bad sector is found and marked, the operating system like Windows or Linux will skip it in the future. Bad sectors are a threat to information security in the sense of data remanence.

In computer storage, the standard RAID levels comprise a basic set of RAID configurations that employ the techniques of striping, mirroring, or parity to create large reliable data stores from multiple general-purpose computer hard disk drives (HDDs). The most common types are RAID 0 (striping), RAID 1 (mirroring) and its variants, RAID 5, and RAID 6. Multiple RAID levels can also be combined or nested, for instance RAID 10 or RAID 01. RAID levels and their associated data formats are standardized by the Storage Networking Industry Association (SNIA) in the Common RAID Disk Drive Format (DDF) standard. The numerical values only serve as identifiers and do not signify performance, reliability, generation, hierarchy, or any other metric.

Although all RAID implementations differ from the specification to some extent, some companies and open-source projects have developed non-standard RAID implementations that differ substantially from the standard. Additionally, there are non-RAID drive architectures, providing configurations of multiple hard drives not referred to by RAID acronyms.

<span class="mw-page-title-main">Interleaving (disk storage)</span> Placing data accessed sequentially into non-sequential blocks

In block storage devices such as hard disk drives, interleaving is a technique used to improve slow system performance by putting data accessed sequentially into non-sequential blocks, typically sectors. The number of physical sectors between consecutive logical sectors is called the interleave skip factor or skip factor.

The FAT file system is a file system used on MS-DOS and Windows 9x family of operating systems. It continues to be used on mobile devices and embedded systems, and thus is a well suited file system for data exchange between computers and devices of almost any type and age from 1981 through the present.

References