In algebra, specifically in the theory of commutative rings, Serre's inequality on height states: given a (Noetherian) regular ring A and a pair of prime ideals in it, for each prime ideal that is a minimal prime ideal over the sum , the following inequality on heights holds: [1] [2]
Without the assumption on regularity, the inequality can fail; see scheme-theoretic intersection#Proper intersection.
Serre gives the following proof of the inequality, based on the validity of Serre's multiplicity conjectures for formal power series ring over a complete discrete valuation ring. [3]
By replacing by the localization at , we assume is a local ring. Then the inequality is equivalent to the following inequality: for finite -modules such that has finite length,
where = the dimension of the support of and similar for . To show the above inequality, we can assume is complete. Then by Cohen's structure theorem, we can write where is a formal power series ring over a complete discrete valuation ring and is a nonzero element in . Now, an argument with the Tor spectral sequence shows that . Then one of Serre's conjectures says , which in turn gives the asserted inequality.
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.
In commutative algebra, the Krull dimension of a commutative ring R, named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules.
In mathematics, a field K is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation v and if its residue field k is finite. Equivalently, a local field is a locally compact topological field with respect to a non-discrete topology. Sometimes, real numbers R, and the complex numbers C are also defined to be local fields; this is the convention we will adopt below. Given a local field, the valuation defined on it can be of either of two types, each one corresponds to one of the two basic types of local fields: those in which the valuation is Archimedean and those in which it is not. In the first case, one calls the local field an Archimedean local field, in the second case, one calls it a non-Archimedean local field. Local fields arise naturally in number theory as completions of global fields.
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers ; and p-adic integers.
In mathematics, the adele ring of a global field is a central object of class field theory, a branch of algebraic number theory. It is the restricted product of all the completions of the global field and is an example of a self-dual topological ring.
In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings, as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.
In mathematics, and especially in algebraic geometry, the intersection number generalizes the intuitive notion of counting the number of times two curves intersect to higher dimensions, multiple curves, and accounting properly for tangency. One needs a definition of intersection number in order to state results like Bézout's theorem.
In mathematics, Serre's multiplicity conjectures, named after Jean-Pierre Serre, are certain purely algebraic problems, in commutative algebra, motivated by the needs of algebraic geometry. Since André Weil's initial definition of intersection numbers, around 1949, there had been a question of how to provide a more flexible and computable theory.
In mathematics, homological conjectures have been a focus of research activity in commutative algebra since the early 1960s. They concern a number of interrelated conjectures relating various homological properties of a commutative ring to its internal ring structure, particularly its Krull dimension and depth.
In mathematics, a Cohen–Macaulay ring is a commutative ring with some of the algebro-geometric properties of a smooth variety, such as local equidimensionality. Under mild assumptions, a local ring is Cohen–Macaulay exactly when it is a finitely generated free module over a regular local subring. Cohen–Macaulay rings play a central role in commutative algebra: they form a very broad class, and yet they are well understood in many ways.
In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let A be a Noetherian local ring with maximal ideal m, and suppose a1, ..., an is a minimal set of generators of m. Then by Krull's principal ideal theorem n ≥ dim A, and A is defined to be regular if n = dim A.
In commutative algebra, Krull's principal ideal theorem, named after Wolfgang Krull (1899–1971), gives a bound on the height of a principal ideal in a commutative Noetherian ring. The theorem is sometimes referred to by its German name, Krulls Hauptidealsatz.
In abstract algebra, a valuation ring is an integral domain D such that for every element x of its field of fractions F, at least one of x or x−1 belongs to D.
In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many primary ideals. The theorem was first proven by Emanuel Lasker (1905) for the special case of polynomial rings and convergent power series rings, and was proven in its full generality by Emmy Noether (1921).
In mathematics, the Noether normalization lemma is a result of commutative algebra, introduced by Emmy Noether in 1926. It states that for any field k, and any finitely generated commutative k-algebraA, there exist algebraically independent elements y1, y2, ..., yd in A such that A is a finitely generated module over the polynomial ring S = k [y1, y2, ..., yd]. The integer d is equal to the Krull dimension of the ring A; and if A is an integral domain, d is also the transcendence degree of the field of fractions of A over k.
In commutative algebra, an element b of a commutative ring B is said to be integral overA, a subring of B, if there are n ≥ 1 and aj in A such that
In commutative and homological algebra, depth is an important invariant of rings and modules. Although depth can be defined more generally, the most common case considered is the case of modules over a commutative Noetherian local ring. In this case, the depth of a module is related with its projective dimension by the Auslander–Buchsbaum formula. A more elementary property of depth is the inequality
In mathematics, dimension theory is the study in terms of commutative algebra of the notion dimension of an algebraic variety. The need of a theory for such an apparently simple notion results from the existence of many definitions of dimension that are equivalent only in the most regular cases. A large part of dimension theory consists in studying the conditions under which several dimensions are equal, and many important classes of commutative rings may be defined as the rings such that two dimensions are equal; for example, a regular ring is a commutative ring such that the homological dimension is equal to the Krull dimension.
In commutative algebra, an integrally closed domainA is an integral domain whose integral closure in its field of fractions is A itself. Spelled out, this means that if x is an element of the field of fractions of A which is a root of a monic polynomial with coefficients in A, then x is itself an element of A. Many well-studied domains are integrally closed, as shown by the following chain of class inclusions:
In algebra, Serre's criterion for normality, introduced by Jean-Pierre Serre, gives necessary and sufficient conditions for a commutative Noetherian ring A to be a normal ring. The criterion involves the following two conditions for A: