Simple root

Last updated

#REDIRECT Polynomial#Solving polynomial equations

Related Research Articles

The P versus NP problem is a major unsolved problem in theoretical computer science. Informally, it asks whether every problem whose solution can be quickly verified can also be quickly solved.

In mathematics, a finite field or Galois field is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod p when p is a prime number.

<span class="mw-page-title-main">NP (complexity)</span> Complexity class used to classify decision problems

In computational complexity theory, NP is a complexity class used to classify decision problems. NP is the set of decision problems for which the problem instances, where the answer is "yes", have proofs verifiable in polynomial time by a deterministic Turing machine, or alternatively the set of problems that can be solved in polynomial time by a nondeterministic Turing machine.

In mathematics, a polynomial is a mathematical expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer powers, and has a finite number of terms. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2yz + 1.

A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to digital data. Blocks of data entering these systems get a short check value attached, based on the remainder of a polynomial division of their contents. On retrieval, the calculation is repeated and, in the event the check values do not match, corrective action can be taken against data corruption. CRCs can be used for error correction.

<span class="mw-page-title-main">NP-hardness</span> Complexity class

In computational complexity theory, a computational problem H is called NP-hard if, for every problem L which can be solved in non-deterministic polynomial-time, there is a polynomial-time reduction from L to H. That is, assuming a solution for H takes 1 unit time, H's solution can be used to solve L in polynomial time. As a consequence, finding a polynomial time algorithm to solve a single NP-hard problem would give polynomial time algorithms for all the problems in the complexity class NP. As it is suspected, but unproven, that P≠NP, it is unlikely that any polynomial-time algorithms for NP-hard problems exist.

<span class="mw-page-title-main">Zero of a function</span> Point where functions value is zero

In mathematics, a zero of a real-, complex-, or generally vector-valued function , is a member of the domain of such that vanishes at ; that is, the function attains the value of 0 at , or equivalently, is a solution to the equation . A "zero" of a function is thus an input value that produces an output of 0.

In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates with coefficients in another ring, often a field.

<span class="mw-page-title-main">Time complexity</span> Estimate of time taken for running an algorithm

In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor.

In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polynomial in the variable with integer coefficients.

In mathematics, the degree of a polynomial is the highest of the degrees of the polynomial's monomials with non-zero coefficients. The degree of a term is the sum of the exponents of the variables that appear in it, and thus is a non-negative integer. For a univariate polynomial, the degree of the polynomial is simply the highest exponent occurring in the polynomial. The term order has been used as a synonym of degree but, nowadays, may refer to several other concepts.

<i>Yu-Gi-Oh! 5Ds</i> Japanese anime series and spin-off

Yu-Gi-Oh! 5D's is the second main spin-off of the Yu-Gi-Oh! franchise, succeeding Yu-Gi-Oh! GX, in celebration of the 40th anniversary of Weekly Shōnen Jump and the 15th anniversary of V Jump. The series aired from April 2008 to March 2011.

<span class="mw-page-title-main">Canon EOS 5D Mark II</span> Digital single-lens reflex camera from Canon

The Canon EOS 5D Mark II is a 21.0 effective megapixel full-frame CMOS digital single-lens reflex camera made by Canon, the first Canon EOS camera to have video recording capabilities. It succeeds the EOS 5D and was announced on 17 September 2008.

<span class="mw-page-title-main">NP-completeness</span> Complexity class

In computational complexity theory, a problem is NP-complete when:

  1. It is a decision problem, meaning that for any input to the problem, the output is either "yes" or "no".
  2. When the answer is "yes", this can be demonstrated through the existence of a short solution.
  3. The correctness of each solution can be verified quickly and a brute-force search algorithm can find a solution by trying all possible solutions.
  4. The problem can be used to simulate every other problem for which we can verify quickly that a solution is correct. In this sense, NP-complete problems are the hardest of the problems to which solutions can be verified quickly. If we could find solutions of some NP-complete problem quickly, we could quickly find the solutions of every other problem to which a given solution can be easily verified.

In mathematics, the Conway polynomialCp,n for the finite field Fpn is a particular irreducible polynomial of degree n over Fp that can be used to define a standard representation of Fpn as a splitting field of Cp,n. Conway polynomials were named after John H. Conway by Richard A. Parker, who was the first to define them and compute examples. Conway polynomials satisfy a certain compatibility condition that had been proposed by Conway between the representation of a field and the representations of its subfields. They are important in computer algebra where they provide portability among different mathematical databases and computer algebra systems. Since Conway polynomials are expensive to compute, they must be stored to be used in practice. Databases of Conway polynomials are available in the computer algebra systems GAP, Macaulay2, Magma, SageMath, at the web site of Frank Lübeck, and at the Online Encyclopedia of Integer Sequences.