Single-root input/output virtualization

Last updated

In virtualization, single root input/output virtualization (SR-IOV) is a specification that allows the isolation of PCI Express resources for manageability and performance reasons.

Contents

Details

A single physical PCI Express bus can be shared in a virtual environment using the SR-IOV specification. [1] [2] The SR-IOV offers different virtual functions to different virtual components (e.g. network adapter) on a physical server machine. SR-IOV uses physical and virtual functions to control or configure PCIe devices. Physical functions have the ability to move data in and out of the device while virtual functions are lightweight PCIe functions that support data flowing but also have a restricted set of configuration resources. The virtual or physical functions available to the hypervisor or guest operating system depend on the PCIe device. [3]

The SR-IOV allows different virtual machines (VMs) in a virtual environment to share a single PCI Express hardware interface. In contrast, MR-IOV allows I/O PCI Express to share resources among different VMs on different physical machines.

InfiniBand

A major field of application for SR-IOV is within high-performance computing (HPC). The use of high-performance InfiniBand networking cards is growing within the HPC sector, and there is early research into the use of SR-IOV to allow for the use of InfiniBand within virtual machines such as Xen. [4]

See also

Related Research Articles

<span class="mw-page-title-main">PCI Express</span> Computer expansion bus standard

PCI Express, officially abbreviated as PCIe or PCI-e, is a high-speed serial computer expansion bus standard, designed to replace the older PCI, PCI-X and AGP bus standards. It is the common motherboard interface for personal computers' graphics cards, sound cards, hard disk drive host adapters, SSDs, Wi-Fi and Ethernet hardware connections. PCIe has numerous improvements over the older standards, including higher maximum system bus throughput, lower I/O pin count and smaller physical footprint, better performance scaling for bus devices, a more detailed error detection and reporting mechanism, and native hot-swap functionality. More recent revisions of the PCIe standard provide hardware support for I/O virtualization.

<span class="mw-page-title-main">Southbridge (computing)</span> One of the two chips in the core logic chipset architecture on a PC motherboard

The southbridge is one of the two chips in the core logic chipset on older personal computer (PC) motherboards, the other being the northbridge. As of 2023, most personal computer devices no longer use a set of two chips, and instead have a single chip acting as the 'chipset', for example Intel's Z790 chipset.

<span class="mw-page-title-main">PCI-X</span> Computer bus and expansion card standard

PCI-X, short for Peripheral Component Interconnect eXtended, is a computer bus and expansion card standard that enhances the 32-bit PCI local bus for higher bandwidth demanded mostly by servers and workstations. It uses a modified protocol to support higher clock speeds, but is otherwise similar in electrical implementation. PCI-X 2.0 added speeds up to 533 MHz, with a reduction in electrical signal levels.

x86 virtualization is the use of hardware-assisted virtualization capabilities on an x86/x86-64 CPU.

<span class="mw-page-title-main">RapidIO</span> Electrical connection technology

The RapidIO architecture is a high-performance packet-switched electrical connection technology. RapidIO supports messaging, read/write and cache coherency semantics. Based on industry-standard electrical specifications such as those for Ethernet, RapidIO can be used as a chip-to-chip, board-to-board, and chassis-to-chassis interconnect.

<span class="mw-page-title-main">PC/104</span> Computer standard family

PC/104 is a family of embedded computer standards which define both form factors and computer buses by the PC/104 Consortium. Its name derives from the 104 pins on the interboard connector (ISA) in the original PC/104 specification and has been retained in subsequent revisions, despite changes to connectors. PC/104 is intended for specialized environments where a small, rugged computer system is required. The standard is modular, and allows consumers to stack together boards from a variety of COTS manufacturers to produce a customized embedded system.

<span class="mw-page-title-main">OpenVZ</span> Operating-system level virtualization technology

OpenVZ is an operating-system-level virtualization technology for Linux. It allows a physical server to run multiple isolated operating system instances, called containers, virtual private servers (VPSs), or virtual environments (VEs). OpenVZ is similar to Solaris Containers and LXC.

<span class="mw-page-title-main">Input–output memory management unit</span> Configuration in computing

In computing, an input–output memory management unit (IOMMU) is a memory management unit (MMU) connecting a direct-memory-access–capable (DMA-capable) I/O bus to the main memory. Like a traditional MMU, which translates CPU-visible virtual addresses to physical addresses, the IOMMU maps device-visible virtual addresses to physical addresses. Some units also provide memory protection from faulty or malicious devices.

Logical Domains is the server virtualization and partitioning technology for SPARC V9 processors. It was first released by Sun Microsystems in April 2007. After the Oracle acquisition of Sun in January 2010, the product has been re-branded as Oracle VM Server for SPARC from version 2.0 onwards.

In virtualization, input/output virtualization is a methodology to simplify management, lower costs and improve performance of servers in enterprise environments. I/O virtualization environments are created by abstracting the upper layer protocols from the physical connections.

NVM Express (NVMe) or Non-Volatile Memory Host Controller Interface Specification (NVMHCIS) is an open, logical-device interface specification for accessing a computer's non-volatile storage media usually attached via the PCI Express bus. The initialism NVM stands for non-volatile memory, which is often NAND flash memory that comes in several physical form factors, including solid-state drives (SSDs), PCIe add-in cards, and M.2 cards, the successor to mSATA cards. NVM Express, as a logical-device interface, has been designed to capitalize on the low latency and internal parallelism of solid-state storage devices.

<span class="mw-page-title-main">LIO (SCSI target)</span> Open-source version of SCSI target

In computing, Linux-IO (LIO) Target is an open-source implementation of the SCSI target that has become the standard one included in the Linux kernel. Internally, LIO does not initiate sessions, but instead provides one or more Logical Unit Numbers (LUNs), waits for SCSI commands from a SCSI initiator, and performs required input/output data transfers. LIO supports common storage fabrics, including FCoE, Fibre Channel, IEEE 1394, iSCSI, iSCSI Extensions for RDMA (iSER), SCSI RDMA Protocol (SRP) and USB. It is included in most Linux distributions; native support for LIO in QEMU/KVM, libvirt, and OpenStack makes LIO also a storage option for cloud deployments.

The eXtensible Host Controller Interface (xHCI) is a technical specification that provides a detailed framework for the functioning of a computer's host controller for Universal Serial Bus (USB). Known alternately as the USB 3.0 host controller specification, xHCI is designed to be backward compatible, supporting a wide range of USB devices from older USB 1.x to the more recent USB 3.x versions.

Google Compute Engine (GCE) is the Infrastructure as a Service (IaaS) component of Google Cloud Platform which is built on the global infrastructure that runs Google's search engine, Gmail, YouTube and other services. Google Compute Engine enables users to launch virtual machines (VMs) on demand. VMs can be launched from the standard images or custom images created by users. GCE users must authenticate based on OAuth 2.0 before launching the VMs. Google Compute Engine can be accessed via the Developer Console, RESTful API or command-line interface (CLI).

<span class="mw-page-title-main">M.2</span> Standard for miniature computer expansion cards

M.2, pronounced m dot two and formerly known as the Next Generation Form Factor (NGFF), is a specification for internally mounted computer expansion cards and associated connectors. M.2 replaces the mSATA standard, which uses the PCI Express Mini Card physical card layout and connectors. Employing a more flexible physical specification, M.2 allows different module widths and lengths, which, paired with the availability of more advanced interfacing features, makes M.2 more suitable than mSATA in general for solid-state storage applications, particularly in smaller devices such as ultrabooks and tablets.

<span class="mw-page-title-main">NVLink</span> High speed chip interconnect

NVLink is a wire-based serial multi-lane near-range communications link developed by Nvidia. Unlike PCI Express, a device can consist of multiple NVLinks, and devices use mesh networking to communicate instead of a central hub. The protocol was first announced in March 2014 and uses a proprietary high-speed signaling interconnect (NVHS).

<span class="mw-page-title-main">QPACE2</span> Massively parallel and scalable supercomputer

QPACE 2 is a massively parallel and scalable supercomputer. It was designed for applications in lattice quantum chromodynamics but is also suitable for a wider range of applications..

ExpEther is a System Hardware Virtualization Technology that expands standard PCI Express beyond 1 km having thousands of roots and endpoint devices together on a single network connected through the standard Ethernet. Abundant commodities of PCI Express-based software and hardware can be utilized without any modification. It also provides software-defined re-configurability to make a disaggregated computing system with device-level.

M-PHY is a high speed data communications physical layer protocol standard developed by the MIPI Alliance, PHY Working group, and targeted at the needs of mobile multimedia devices. The specification's details are proprietary to MIPI member organizations, but a substantial body of knowledge can be assembled from open sources. A number of industry standard settings bodies have incorporated M-PHY into their specifications including Mobile PCI Express, Universal Flash Storage, and as the physical layer for SuperSpeed InterChip USB.

Compute Express Link (CXL) is an open standard for high-speed, high capacity central processing unit (CPU)-to-device and CPU-to-memory connections, designed for high performance data center computers. CXL is built on the serial PCI Express (PCIe) physical and electrical interface and includes PCIe-based block input/output protocol (CXL.io) and new cache-coherent protocols for accessing system memory (CXL.cache) and device memory (CXL.mem). The serial communication and pooling capabilities allows CXL memory to overcome performance and socket packaging limitations of common DIMM memory when implementing high storage capacities.

References

  1. "Single Root I/O Virtualization (SR-IOV)". MSDN .
  2. Nathan Willis (18 February 2016). "Netconf discussions, part 2". LWN.net.
  3. "Single Root I/O Virtualization (SR-IOV)". vmware .
  4. http://datasys.cs.iit.edu/reports/2014_IIT_virtualization-fermicloud.pdf [ bare URL PDF ]