Slingshot argument

Last updated

In philosophical logic, a slingshot argument is one of a group of arguments claiming to show that all true sentences stand for the same thing.

Contents

This type of argument was dubbed the "slingshot" by philosophers Jon Barwise and John Perry (1981) due to its disarming simplicity. It is usually said that versions of the slingshot argument have been given by Gottlob Frege, Alonzo Church, W. V. Quine, and Donald Davidson. However, it has been disputed by Lorenz Krüger (1995) that there is much unity in this tradition. Moreover, Krüger rejects Davidson's claim that the argument can refute the correspondence theory of truth. Stephen Neale (1995) claims, controversially, that the most compelling version was suggested by Kurt Gödel (1944).

These arguments are sometimes modified to support the alternative, and evidently stronger, conclusion that there is only one fact , or one true proposition , state of affairs , truth condition , truthmaker , and so on.

The argument

One version of the argument (Perry 1996) proceeds as follows.

Assumptions:

  1. Substitution. If two terms designate the same thing, then substituting one for another in a sentence does not change the designation of that sentence.
  2. Redistribution. Rearranging the parts of a sentence does not change the designation of that sentence, provided the truth conditions of the sentence do not change.
  3. Every sentence is equivalent to a sentence of the form F(a). In other words, every sentence has the same designation as some sentence that attributes a property to something. (For example, "All men are mortal" is equivalent to "The number 1 has the property of being such that all men are mortal".)
  4. For any two objects there is a relation that holds uniquely between them. (For example, if the objects in question are denoted by "a" and "b", the relation in question might be R(x, y), which is stipulated to hold just in case x = a and y = b.)

Let S and T be arbitrary true sentences, designating Des(S) and Des(T), respectively. (No assumptions are made about what kinds of things Des(S) and Des(T) are.) It is now shown by a series of designation-preserving transformations that Des(S) = Des(T). Here, "" can be read as "the x such that".

1.
2.assumption 3
3.redistribution
4.substitution, assumption 4
5.redistribution
6.redistribution
7.substitution, assumption 3
8.redistribution
9.assumption 3

Note that (1)-(9) is not a derivation of T from S. Rather, it is a series of (allegedly) designation-preserving transformation steps.

Responses to the argument

As Gödel (1944) observed, the slingshot argument does not go through if Bertrand Russell's famous account of definite descriptions is assumed. Russell claimed that the proper logical interpretation of a sentence of the form "The F is G" is:

Exactly one thing is F, and that thing is also G.

Or, in the language of first-order logic:

When the sentences above containing -expressions are expanded out to their proper form, the steps involving substitution are seen to be illegitimate. Consider, for example, the move from (3) to (4). On Russell's account, (3) and (4) are shorthand for:

3'.
4'.

Clearly the substitution principle and assumption 4 do not license the move from (3') to (4'). Thus, one way to look at the slingshot is as simply another argument in favor of Russell's theory of definite descriptions.

If one is not willing to accept Russell's theory, then it seems wise to challenge either substitution or redistribution, which seem to be the other weakest points in the argument. Perry (1996), for example, rejects both of these principles, proposing to replace them with certain weaker, qualified versions that do not allow the slingshot argument to go through.

See also

Related Research Articles

An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word ἀξίωμα (axíōma), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'.

In mathematics, the axiom of regularity is an axiom of Zermelo–Fraenkel set theory that states that every non-empty set A contains an element that is disjoint from A. In first-order logic, the axiom reads:

First-order logic—also called predicate logic, predicate calculus, quantificational logic—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

In logic, the law of excluded middle or the principle of excluded middle states that for every proposition, either this proposition or its negation is true. It is one of the three laws of thought, along with the law of noncontradiction, and the law of identity; however, no system of logic is built on just these laws, and none of these laws provides inference rules, such as modus ponens or De Morgan's laws. The law is also known as the law / principleof the excluded third, in Latin principium tertii exclusi. Another Latin designation for this law is tertium non datur or "no third [possibility] is given". In classical logic, the law is a tautology.

In philosophy and logic, the classical liar paradox or liar's paradox or antinomy of the liar is the statement of a liar that they are lying: for instance, declaring that "I am lying". If the liar is indeed lying, then the liar is telling the truth, which means the liar just lied. In "this sentence is a lie" the paradox is strengthened in order to make it amenable to more rigorous logical analysis. It is still generally called the "liar paradox" although abstraction is made precisely from the liar making the statement. Trying to assign to this statement, the strengthened liar, a classical binary truth value leads to a contradiction.

The propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of conjunction, disjunction, implication, biconditional, and negation. Some sources include other connectives, as in the table below.

In mathematical logic, Russell's paradox is a set-theoretic paradox published by the British philosopher and mathematician Bertrand Russell in 1901. Russell's paradox shows that every set theory that contains an unrestricted comprehension principle leads to contradictions. The paradox had already been discovered independently in 1899 by the German mathematician Ernst Zermelo. However, Zermelo did not publish the idea, which remained known only to David Hilbert, Edmund Husserl, and other academics at the University of Göttingen. At the end of the 1890s, Georg Cantor – considered the founder of modern set theory – had already realized that his theory would lead to a contradiction, as he told Hilbert and Richard Dedekind by letter.

<span class="mw-page-title-main">Saul Kripke</span> American philosopher and logician (1940–2022)

Saul Aaron Kripke was an American analytic philosopher and logician. He was Distinguished Professor of Philosophy at the Graduate Center of the City University of New York and emeritus professor at Princeton University. Since the 1960s, he has been a central figure in a number of fields related to mathematical and modal logic, philosophy of language and mathematics, metaphysics, epistemology, and recursion theory.

Gödel's incompleteness theorems are two theorems of mathematical logic that are concerned with the limits of provability in formal axiomatic theories. These results, published by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of mathematics. The theorems are widely, but not universally, interpreted as showing that Hilbert's program to find a complete and consistent set of axioms for all mathematics is impossible.

The history of logic deals with the study of the development of the science of valid inference (logic). Formal logics developed in ancient times in India, China, and Greece. Greek methods, particularly Aristotelian logic as found in the Organon, found wide application and acceptance in Western science and mathematics for millennia. The Stoics, especially Chrysippus, began the development of predicate logic.

Curry's paradox is a paradox in which an arbitrary claim F is proved from the mere existence of a sentence C that says of itself "If C, then F". The paradox requires only a few apparently-innocuous logical deduction rules. Since F is arbitrary, any logic having these rules allows one to prove everything. The paradox may be expressed in natural language and in various logics, including certain forms of set theory, lambda calculus, and combinatory logic.

In logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory.

In mathematical logic, the diagonal lemma establishes the existence of self-referential sentences in certain formal theories of the natural numbers—specifically those theories that are strong enough to represent all computable functions. The sentences whose existence is secured by the diagonal lemma can then, in turn, be used to prove fundamental limitative results such as Gödel's incompleteness theorems and Tarski's undefinability theorem.

In the philosophy of mathematics, logicism is a programme comprising one or more of the theses that – for some coherent meaning of 'logic' – mathematics is an extension of logic, some or all of mathematics is reducible to logic, or some or all of mathematics may be modelled in logic. Bertrand Russell and Alfred North Whitehead championed this programme, initiated by Gottlob Frege and subsequently developed by Richard Dedekind and Giuseppe Peano.

In formal semantics and philosophy of language, a definite description is a denoting phrase in the form of "the X" where X is a noun-phrase or a singular common noun. The definite description is proper if X applies to a unique individual or object. For example: "the first person in space" and "the 42nd President of the United States of America", are proper. The definite descriptions "the person in space" and "the Senator from Ohio" are improper because the noun phrase X applies to more than one thing, and the definite descriptions "the first man on Mars" and "the Senator from Washington D.C." are improper because X applies to nothing. Improper descriptions raise some difficult questions about the law of excluded middle, denotation, modality, and mental content.

Kenneth Jon Barwise was an American mathematician, philosopher and logician who proposed some fundamental revisions to the way that logic is understood and used.

The theory of descriptions is the philosopher Bertrand Russell's most significant contribution to the philosophy of language. It is also known as Russell's theory of descriptions. In short, Russell argued that the syntactic form of descriptions is misleading, as it does not correlate their logical and/or semantic architecture. While descriptions may seem like fairly uncontroversial phrases, Russell argued that providing a satisfactory analysis of the linguistic and logical properties of a description is vital to clarity in important philosophical debates, particularly in semantic arguments, epistemology and metaphysical elements.

In the philosophy of language, the descriptivist theory of proper names is the view that the meaning or semantic content of a proper name is identical to the descriptions associated with it by speakers, while their referents are determined to be the objects that satisfy these descriptions. Bertrand Russell and Gottlob Frege have both been associated with the descriptivist theory, which has been called the mediated reference theory or Frege–Russell view.

In mathematical logic, Rosser's trick is a method for proving a variant of Gödel's incompleteness theorems not relying on the assumption that the theory being considered is ω-consistent. This method was introduced by J. Barkley Rosser in 1936, as an improvement of Gödel's original proof of the incompleteness theorems that was published in 1931.

Logical consequence is a fundamental concept in logic which describes the relationship between statements that hold true when one statement logically follows from one or more statements. A valid logical argument is one in which the conclusion is entailed by the premises, because the conclusion is the consequence of the premises. The philosophical analysis of logical consequence involves the questions: In what sense does a conclusion follow from its premises? and What does it mean for a conclusion to be a consequence of premises? All of philosophical logic is meant to provide accounts of the nature of logical consequence and the nature of logical truth.

References