Sonine formula

Last updated

In mathematics, Sonine's formula is any of several formulas involving Bessel functions found by Nikolay Yakovlevich Sonin.

One such formula is the following integral formula involving a product of three Bessel functions:

where Δ is the area of a triangle with given sides.

Related Research Articles

<span class="mw-page-title-main">Bessel function</span> Families of solutions to related differential equations

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical physics, the Dirac delta distribution, also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.

In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation. If the values of the first numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation.

<span class="mw-page-title-main">Cubic equation</span> Polynomial equation of degree 3

In algebra, a cubic equation in one variable is an equation of the form

In mathematics, the Kronecker delta is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise:

<span class="mw-page-title-main">Translation (geometry)</span> Planar movement within a Euclidean space without rotation

In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system. In a Euclidean space, any translation is an isometry.

<span class="mw-page-title-main">Quartic function</span> Polynomial function of degree four

In algebra, a quartic function is a function of the form

In mathematics, an algebraic equation or polynomial equation is an equation of the form

<span class="mw-page-title-main">Airy function</span> Special function in the physical sciences

In the physical sciences, the Airy function (or Airy function of the first kind) Ai(x) is a special function named after the British astronomer George Biddell Airy (1801–1892). The function Ai(x) and the related function Bi(x), are linearly independent solutions to the differential equation

<span class="mw-page-title-main">Laguerre polynomials</span> Sequence of differential equation solutions

In mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834–1886), are solutions of Laguerre's differential equation:

In mathematics, the Helmholtz equation is the eigenvalue problem for the Laplace operator. It corresponds to the linear partial differential equation

<span class="mw-page-title-main">Heat kernel</span> Fundamental solution to the heat equation, given boundary values

In the mathematical study of heat conduction and diffusion, a heat kernel is the fundamental solution to the heat equation on a specified domain with appropriate boundary conditions. It is also one of the main tools in the study of the spectrum of the Laplace operator, and is thus of some auxiliary importance throughout mathematical physics. The heat kernel represents the evolution of temperature in a region whose boundary is held fixed at a particular temperature, such that an initial unit of heat energy is placed at a point at time t = 0.

In mathematics, Fourier–Bessel series is a particular kind of generalized Fourier series based on Bessel functions.

The Lerche–Newberger, or Newberger, sum rule, discovered by B. S. Newberger in 1982, finds the sum of certain infinite series involving Bessel functions Jα of the first kind. It states that if μ is any non-integer complex number, , and Re(α + β) > −1, then

<span class="mw-page-title-main">Bessel–Clifford function</span>

In mathematical analysis, the Bessel–Clifford function, named after Friedrich Bessel and William Kingdon Clifford, is an entire function of two complex variables that can be used to provide an alternative development of the theory of Bessel functions. If

In analytic number theory, the Petersson trace formula is a kind of orthogonality relation between coefficients of a holomorphic modular form. It is a specialization of the more general Kuznetsov trace formula.

In mathematics, the Butcher group, named after the New Zealand mathematician John C. Butcher by Hairer & Wanner (1974), is an infinite-dimensional Lie group first introduced in numerical analysis to study solutions of non-linear ordinary differential equations by the Runge–Kutta method. It arose from an algebraic formalism involving rooted trees that provides formal power series solutions of the differential equation modeling the flow of a vector field. It was Cayley (1857), prompted by the work of Sylvester on change of variables in differential calculus, who first noted that the derivatives of a composition of functions can be conveniently expressed in terms of rooted trees and their combinatorics.

In mathematics, the Neumann polynomials, introduced by Carl Neumann for the special case , are a sequence of polynomials in used to expand functions in term of Bessel functions.

In mathematics, a Jackson q-Bessel function is one of the three q-analogs of the Bessel function introduced by Jackson. The third Jackson q-Bessel function is the same as the Hahn–Exton q-Bessel function.

In mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus, developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900. Jan Arnoldus Schouten developed the modern notation and formalism for this mathematical framework, and made contributions to the theory, during its applications to general relativity and differential geometry in the early twentieth century.

References