In computability theory, a Specker sequence is a computable, monotonically increasing, bounded sequence of rational numbers whose supremum is not a computable real number. The first example of such a sequence was constructed by Ernst Specker (1949).
The existence of Specker sequences has consequences for computable analysis. The fact that such sequences exist means that the collection of all computable real numbers does not satisfy the least upper bound principle of real analysis, even when considering only computable sequences. A common way to resolve this difficulty is to consider only sequences that are accompanied by a modulus of convergence; no Specker sequence has a computable modulus of convergence. More generally, a Specker sequence is called a recursive counterexample to the least upper bound principle, i.e. a construction that shows that this theorem is false when restricted to computable reals.
The least upper bound principle has also been analyzed in the program of reverse mathematics, where the exact strength of this principle has been determined. In the terminology of that program, the least upper bound principle is equivalent to ACA0 over RCA0. In fact, the proof of the forward implication, i.e. that the least upper bound principle implies ACA0, is readily obtained from the textbook proof (see Simpson, 1999) of the non-computability of the supremum in the least upper bound principle.
The following construction is described by Kushner (1984). Let A be any recursively enumerable set of natural numbers that is not decidable, and let (ai) be a computable enumeration of A without repetition. Define a sequence (qn) of rational numbers with the rule
It is clear that each qn is nonnegative and rational, and that the sequence qn is strictly increasing. Moreover, because ai has no repetition, it is possible to estimate each qn against the series
Thus the sequence (qn) is bounded above by 1. Classically, this means that qn has a supremum x.
It is shown that x is not a computable real number. The proof uses a particular fact about computable real numbers. If x were computable then there would be a computable function r(n) such that |qj - qi| < 1/n for all i,j > r(n). To compute r, compare the binary expansion of x with the binary expansion of qi for larger and larger values of i. The definition of qi causes a single binary digit to go from 0 to 1 each time i increases by 1. Thus there will be some n where a large enough initial segment of x has already been determined by qn that no additional binary digits in that segment could ever be turned on, which leads to an estimate on the distance between qi and qj for i,j > n.
If any such a function r were computable, it would lead to a decision procedure for A, as follows. Given an input k, compute r(2k+1). If k were to appear in the sequence (ai), this would cause the sequence (qi) to increase by 2−k-1, but this cannot happen once all the elements of (qi) are within 2−k-1 of each other. Thus, if k is going to be enumerated into ai, it must be enumerated for a value of i less than r(2k+1). This leaves a finite number of possible places where k could be enumerated. To complete the decision procedure, check these in an effective manner and then return 0 or 1 depending on whether k is found.
In mathematics, a Cauchy sequence, named after Augustin-Louis Cauchy, is a sequence whose elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all but a finite number of elements of the sequence are less than that given distance from each other.
In the computer science subfield of algorithmic information theory, a Chaitin constant or halting probability is a real number that, informally speaking, represents the probability that a randomly constructed program will halt. These numbers are formed from a construction due to Gregory Chaitin.
In mathematics, computable numbers are the real numbers that can be computed to within any desired precision by a finite, terminating algorithm. They are also known as the recursive numbers, effective numbers or the computable reals or recursive reals. The concept of a computable real number was introduced by Emile Borel in 1912, using the intuitive notion of computability available at the time.
In the philosophy of mathematics, constructivism asserts that it is necessary to find a specific example of a mathematical object in order to prove that an example exists. Contrastingly, in classical mathematics, one can prove the existence of a mathematical object without "finding" that object explicitly, by assuming its non-existence and then deriving a contradiction from that assumption. Such a proof by contradiction might be called non-constructive, and a constructivist might reject it. The constructive viewpoint involves a verificational interpretation of the existential quantifier, which is at odds with its classical interpretation.
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members. The number of elements is called the length of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an arbitrary index set.
In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation on some set , which satisfies the following for all and in :
The Collatz conjecture is one of the most famous unsolved problems in mathematics. The conjecture asks whether repeating two simple arithmetic operations will eventually transform every positive integer into 1. It concerns sequences of integers in which each term is obtained from the previous term as follows: if the previous term is even, the next term is one half of the previous term. If the previous term is odd, the next term is 3 times the previous term plus 1. The conjecture is that these sequences always reach 1, no matter which positive integer is chosen to start the sequence.
In mathematics, the infimum of a subset of a partially ordered set is a greatest element in that is less than or equal to each element of if such an element exists. Consequently, the term greatest lower bound is also commonly used. The supremum of a subset of a partially ordered set is the least element in that is greater than or equal to each element of if such an element exists. Consequently, the supremum is also referred to as the least upper bound.
In mathematics, constructive analysis is mathematical analysis done according to some principles of constructive mathematics. This contrasts with classical analysis, which simply means analysis done according to the principles of classical mathematics.
In calculus, the extreme value theorem states that if a real-valued function is continuous on the closed interval , then must attain a maximum and a minimum, each at least once. That is, there exist numbers and in such that:
In mathematics, there are several equivalent ways of defining the real numbers. One of them is that they form a complete ordered field that does not contain any smaller complete ordered field. Such a definition does not prove that such a complete ordered field exists, and the existence proof consists of constructing a mathematical structure that satisfies the definition.
Reverse mathematics is a program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics. Its defining method can briefly be described as "going backwards from the theorems to the axioms", in contrast to the ordinary mathematical practice of deriving theorems from axioms. It can be conceptualized as sculpting out necessary conditions from sufficient ones.
In computer science and mathematical logic the Turing degree or degree of unsolvability of a set of natural numbers measures the level of algorithmic unsolvability of the set.
In mathematics, 0.999... denotes the repeating decimal consisting of an unending sequence of 9s after the decimal point. This repeating decimal represents the smallest number no less than every decimal number in the sequence ; that is, the supremum of this sequence. This number is equal to 1. In other words, "0.999..." is not "almost exactly" or "very, very nearly but not quite" 1 – rather, "0.999..." and "1" represent exactly the same number.
In computability theory, a function is called limit computable if it is the limit of a uniformly computable sequence of functions. The terms computable in the limit, limit recursive and recursively approximable are also used. One can think of limit computable functions as those admitting an eventually correct computable guessing procedure at their true value. A set is limit computable just when its characteristic function is limit computable.
In mathematics, a sequence of nested intervals can be intuitively understood as an ordered collection of intervals on the real number line with natural numbers as an index. In order for a sequence of intervals to be considered nested intervals, two conditions have to be met:
In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion.
In mathematics, the least-upper-bound property is a fundamental property of the real numbers. More generally, a partially ordered set X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound (supremum) in X. Not every (partially) ordered set has the least upper bound property. For example, the set of all rational numbers with its natural order does not have the least upper bound property.
In number theory, the Calkin–Wilf tree is a tree in which the vertices correspond one-to-one to the positive rational numbers. The tree is rooted at the number 1, and any rational number expressed in simplest terms as the fraction a/b has as its two children the numbers a/a + b and a + b/b. Every positive rational number appears exactly once in the tree. It is named after Neil Calkin and Herbert Wilf, but appears in other works including Kepler's Harmonices Mundi.
Completeness is a property of the real numbers that, intuitively, implies that there are no "gaps" or "missing points" in the real number line. This contrasts with the rational numbers, whose corresponding number line has a "gap" at each irrational value. In the decimal number system, completeness is equivalent to the statement that any infinite string of decimal digits is actually a decimal representation for some real number.