Standard Radio & Telefon AB

Last updated
CSA 50/10 air traffic and fighter control radio system CSA 50-10 fighter control radio.JPG
CSA 50/10 air traffic and fighter control radio system

Standard Radio & Telefon AB (SRT) was a Swedish telecommunications and computer manufacturer, at one time part of the ITT Corporation.

The factory was located in Bromma, north of Stockholm. They developed a range of HF radio products.

They developed an advanced mainframe as well as a computer terminal called Alfaskop that became an export success. A bit much of a success, since an export of a system for air traffic control to Moscow caused a diplomatic incident.

Radio System 90 - the DACOBAS desk at the central station
Radio System 90 of SRT Standard Radio & Telefon AB - Embassy Radio training station - earlier used for the Swiss Embassy Radio System Radio System 90 of SRT Standard Radio & Telefon AB.jpg
Radio System 90 - the DACOBAS desk at the central station
Swiss Embassy Radio -Trainingstation System 90 from SRT Stockholm.jpg
Radio System 90 of SRT Standard Radio & Telefon AB - Embassy Radio training station - earlier used for the Swiss Embassy Radio System

More products :

VFT - Voice Frequency Telegraph system

ARTRAC - Automatic Radio TRAffic Controller

AEC 90 - Modem for SITOR, Simplex Teleprinting over Radio

TD 90 - HF Transmitter Driver

TD 91 - HF Transmitter Driver

CR 90 - HF Communication receiver

CR 91 - HF Communication receiver

SSA 400 - 400W HF Solid State Power Amplifier

SSA 420 - 400W HF Solid State Power Amplifier

SSA 1000 - 1000W Solid State Power Amplifier

SSA 1020 - 1000W Solid State MOSFET Power Amplifier

ATM 1000 - Automatic Antenna Coupler

BBD-367 - HF Broadband Dipole Antenna

Ra 200 - 8W HF Manpack Receiver-Transmitter for the Swedish military

***

List of customers :

* Swiss embassies

* Turkish embassies

* Malaysian embassies

* Algeria Civil Aviation Administration

* Interpol Stockholm and Zurich

* Ministry of Foreign Affairs, Stockholm. ( small system, they used Drake)

* HF system for Istanbul airport

* Selcall for Hercules aircraft, Arlanda

* Receivers and transmitters for the Danish Navy, still in use

* Receivers and transmitters for the Swedish Army,Navy and Air Force

* Receivers and transmitters for fixed, air/ground and maritime services, Swedish Telecommunications Administration, still in use


***

Some details about the Turkish Embassy Radio system :

The transmitter was the old driver CTD 500 with SSA 400 or SSA 1000. Receiver was the CR 300, two of them in the cabinet. The intention was to use space diversity. No place for two "real" Antennas, the second receiver got an active antenna AA300. Each receiver had a FSK demodulator, CRFD 1000.

The main use  for the second receiver became a broadcast receiver. The system used FEC, equipment from Siemens, FEC 100. It could handle a total loss of signal for 1,5 second.

Antennas used was a logper from Granger, 6- 30 MHz. This Antenna used wires instead of solid elements. Some stations got an ATU 1000 with a 10m whip.

The teleprinter came from SAGEM, similar to Siemens T100.

Some 30-40 embassies was installed, from Washington in the West to Beijing in the East. The main station in Ankara had 12 Transmitters, remote controlled. some 400W some 1000 W. Remote control was via " Voice Frequency Telegraph" VFT system made by SRT.

Before SRT got the order a test system was set up between Berne and Ankara, everything worked fine and MOFA in Ankara signed the order.

Related Research Articles

A communications system or communication system is a collection of individual telecommunications networks systems, relay stations, tributary stations, and terminal equipment usually capable of interconnection and interoperation to form an integrated whole. The components of a communications system serve a common purpose, are technically compatible, use common procedures, respond to controls, and operate in union.

<span class="mw-page-title-main">Software-defined radio</span> Radio communication system implemented in software

Software-defined radio (SDR) is a radio communication system where components that conventionally have been implemented in analog hardware are instead implemented by means of software on a computer or embedded system. While the concept of SDR is not new, the rapidly evolving capabilities of digital electronics render practical many processes which were once only theoretically possible.

<span class="mw-page-title-main">Medium frequency</span> The range 300-3000 kHz of the electromagnetic spectrum

Medium frequency (MF) is the ITU designation for radio frequencies (RF) in the range of 300 kilohertz (kHz) to 3 megahertz (MHz). Part of this band is the medium wave (MW) AM broadcast band. The MF band is also known as the hectometer band as the wavelengths range from ten to one hectometers. Frequencies immediately below MF are denoted as low frequency (LF), while the first band of higher frequencies is known as high frequency (HF). MF is mostly used for AM radio broadcasting, navigational radio beacons, maritime ship-to-shore communication, and transoceanic air traffic control.

<span class="mw-page-title-main">Radio receiver</span> Device for receiving radio broadcasts

In radio communications, a radio receiver, also known as a receiver, a wireless, or simply a radio, is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. The antenna intercepts radio waves and converts them to tiny alternating currents which are applied to the receiver, and the receiver extracts the desired information. The receiver uses electronic filters to separate the desired radio frequency signal from all the other signals picked up by the antenna, an electronic amplifier to increase the power of the signal for further processing, and finally recovers the desired information through demodulation.

<span class="mw-page-title-main">Antenna tuner</span> Telecommunications device

An antenna tuner is a passive electronic device inserted into the feedline between a radio transmitter and its antenna. Its purpose is to optimize power transfer by matching the impedance of the radio to the signal impedance at the end of the feedline connecting the antenna to the transmitter.

<span class="mw-page-title-main">Direction finding</span> Measurement of the direction from which a received signal was transmitted

Direction finding (DF), or radio direction finding (RDF), is the use of radio waves to determine the direction to a radio wave source. The source may be a cooperating radio transmitter or may be an inadvertant source, a naturally-occurring radio source, or an illicit or enemy system. Radio direction finding differs from radar in that only the direction is determined by any one receiver; a radar system usually also gives a distance to the object of interest, as well as direction. By triangulation, the location of a radio source can be determined by measuring its direction from two or more locations. Radio direction finding is used in radio navigation for ships and aircraft, to locate emergency transmitters for search and rescue, for tracking wildlife, and to locate illegal or interfering transmitters. During the Second World War, radio direction finding was used by both sides to locate and direct aircraft, surface ships, and submarines.

<span class="mw-page-title-main">Grimeton Radio Station</span> Historic Swedish wireless telegraphy station

Grimeton Radio Station in southern Sweden, close to Varberg in Halland, is an early longwave transatlantic wireless telegraphy station built in 1922–1924, that has been preserved as a historical site. From the 1920s through the 1940s it was used to transmit telegram traffic by Morse code to North America and other countries, and during World War II was Sweden's only telecommunication link with the rest of the world. It is the only remaining example of an early pre-electronic radio transmitter technology called an Alexanderson alternator. It was added to the UNESCO World Heritage List in 2004, with the statement: "Grimeton Radio Station, Varberg is an outstanding monument representing the process of development of communication technology in the period following the First World War." The radio station is also an anchor site for the European Route of Industrial Heritage. The transmitter is still in operational condition, and each year on a day called Alexanderson Day is started up and transmits brief Morse code test transmissions, which can be received all over Europe.

A television transmitter is a transmitter that is used for terrestrial (over-the-air) television broadcasting. It is an electronic device that radiates radio waves that carry a video signal representing moving images, along with a synchronized audio channel, which is received by television receivers belonging to a public audience, which display the image on a screen. A television transmitter, together with the broadcast studio which originates the content, is called a television station. Television transmitters must be licensed by governments, and are restricted to a certain frequency channel and power level. They transmit on frequency channels in the VHF and UHF bands. Since radio waves of these frequencies travel by line of sight, they are limited by the horizon to reception distances of 40–60 miles depending on the height of transmitter station.

<span class="mw-page-title-main">Linear amplifier</span> Electronic circuit

A linear amplifier is an electronic circuit whose output is proportional to its input, but capable of delivering more power into a load. The term usually refers to a type of radio-frequency (RF) power amplifier, some of which have output power measured in kilowatts, and are used in amateur radio. Other types of linear amplifier are used in audio and laboratory equipment. Linearity refers to the ability of the amplifier to produce signals that are accurate copies of the input. A linear amplifier responds to different frequency components independently, and tends not to generate harmonic distortion or intermodulation distortion. No amplifier can provide perfect linearity however, because the amplifying devices—transistors or vacuum tubes—follow nonlinear transfer function and rely on circuitry techniques to reduce those effects. There are a number of amplifier classes providing various trade-offs between implementation cost, efficiency, and signal accuracy.

The R. L. Drake Company is a manufacturer of electronic communications equipment located in Springboro, Ohio. It is also known for its line of equipment for amateur radio and shortwave listening, built in the 1950s through the 1980s. The company operates as a separate entity owned by Blonder Tongue Laboratories, Inc.

A radio transmitter or just transmitter is an electronic device which produces radio waves with an antenna. Radio waves are electromagnetic waves with frequencies between about 30 Hz and 300 GHz. The transmitter itself generates a radio frequency alternating current, which is applied to the antenna. When excited by this alternating current, the antenna radiates radio waves. Transmitters are necessary parts of all systems that use radio: radio and television broadcasting, cell phones, wireless networks, radar, two way radios like walkie talkies, radio navigation systems like GPS, remote entry systems, among numerous other uses.

A radio transmitter or receiver is connected to an antenna which emits or receives the radio waves. The antenna feed system or antenna feed is the cable or conductor, and other associated equipment, which connects the transmitter or receiver with the antenna and makes the two devices compatible. In a radio transmitter, the transmitter generates an alternating current of radio frequency, and the feed system feeds the current to the antenna, which converts the power in the current to radio waves. In a radio receiver, the incoming radio waves excite tiny alternating currents in the antenna, and the feed system delivers this current to the receiver, which processes the signal.

<span class="mw-page-title-main">AN/ARC-5</span> WW II U.S. military aircraft radio system

The AN/ARC-5 Command Radio Set is a series of radio receivers, transmitters, and accessories carried aboard U.S. Navy aircraft during World War II and for some years afterward. It is described as "a complete multi-channel radio transmitting and receiving set providing communication and navigation facilities for aircraft. The LF-MF-HF components are designed to transmit and receive voice, tone-modulated, and continuous wave (cw) signals." Its flexible design provided AM radiotelephone voice communication and Modulated continuous wave (MCW) and Continuous wave (CW) Morse code modes, all of which are typical capabilities in other Navy aircraft communication sets of the period. It was an improvement of the Navy's ARA/ATA command set. Similar units designated SCR-274-N were used in U.S. Army aircraft. The Army set is based on the ARA/ATA, not the later AN/ARC-5. The ARA/ATA and SCR-274-N series are informally referred to as "ARC-5", despite small differences that render all three series incompatible. Like the AN/ARC-5, the ARA/ATA and SCR-274-N had AM voice communication and two-way MCW and CW Morse code capability.

<span class="mw-page-title-main">Carbon microphone</span> Microphone design

The carbon microphone, also known as carbon button microphone, button microphone, or carbon transmitter, is a type of microphone, a transducer that converts sound to an electrical audio signal. It consists of two metal plates separated by granules of carbon. One plate is very thin and faces toward the speaking person, acting as a diaphragm. Sound waves striking the diaphragm cause it to vibrate, exerting a varying pressure on the granules, which in turn changes the electrical resistance between the plates. Higher pressure lowers the resistance as the granules are pushed closer together. A steady direct current is passed between the plates through the granules. The varying resistance results in a modulation of the current, creating a varying electric current that reproduces the varying pressure of the sound wave. In telephony, this undulating current is directly passed through the telephone wires to the central office. In public address systems it is amplified by an audio amplifier. The frequency response of most carbon microphones, however, is limited to a narrow range, and the device produces significant electrical noise.

<span class="mw-page-title-main">Medicina Radio Observatory</span> Astronomical observatory near Bologna, Italy

The Medicina Radio Observatory is an astronomical observatory located 30 km from Bologna, Italy. It is operated by the Institute for Radio Astronomy of the National Institute for Astrophysics (INAF) of the government of Italy.

<span class="mw-page-title-main">RF power amplifier</span> Type of electronic amplifier

A radio-frequency power amplifier is a type of electronic amplifier that converts a low-power radio-frequency (RF) signal into a higher-power signal. Typically, RF power amplifiers are used in the final stage of a radio transmitter, their output driving the antenna. Design goals often include gain, power output, bandwidth, power efficiency, linearity, input and output impedance matching, and heat dissipation.

<span class="mw-page-title-main">Mobile radio</span> Wireless communications systems using radio frequencies

Mobile radio or mobiles refer to wireless communications systems and devices which are based on radio frequencies, and where the path of communications is movable on either end. There are a variety of views about what constitutes mobile equipment. For US licensing purposes, mobiles may include hand-carried,, equipment. An obsolete term is radiophone.

<span class="mw-page-title-main">Explorer 49</span> NASA satellite of the Explorer program

Explorer 49 was a NASA 328 kg (723 lb) satellite launched on 10 June 1973, for long wave radio astronomy research. It had four 230 m (750 ft) X-shaped antenna elements, which made it one of the largest spacecraft ever built.

In broadcasting, a transposer or translator is a device in or beyond the service area of a radio or television station transmitter that rebroadcasts signals to receivers which can’t properly receive the signals of the transmitter because of a physical obstruction. A translator receives the signals of the transmitter and rebroadcasts the signals to the area of poor reception. Sometimes the translator is also called a relay transmitter, rebroadcast transmitter or transposer. Since translators are used to cover a small shadowed area, their output powers are usually lower than that of the radio or television station transmitters feeding them.

During World War II, the German Army relied on an diverse array of communications to maintain contact with its mobile forces and in particular with its armoured forces. Most of this equipment received the generic prefix FuG for Funkgerät, meaning "radio device". Occasionally the shorted Fu designation were used and there were exceptions to both these systems. Number ranges were not unique across the services so sometimes different equipment used by different services had the same FuG prefix. This article is a list and a description of the radio equipment.

References