State-of-the-Art Reactor Consequence Analyses

Last updated

The State-of-the-Art Reactor Consequence Analyses (SOARCA) is a study [1] of nuclear power plant safety conducted by the Nuclear Regulatory Commission. The purpose of the SOARCA is assessment of possible impact on population caused by major radiation accidents that might occur at NPPs. [2] This new study updates older studies with the latest state-of-the-art computer models and incorporates new plant safety and security enhancements.

Nuclear power power generated from sustained nuclear fission

Nuclear power is the use of nuclear reactions that release nuclear energy to generate heat, which most frequently is then used in steam turbines to produce electricity in a nuclear power plant. As a nuclear technology, nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced by nuclear fission of uranium and plutonium. Nuclear decay processes are used in niche applications such as radioisotope thermoelectric generators. Generating electricity from fusion power remains at the focus of international research. This article mostly deals with nuclear fission power for electricity generation.

Nuclear Regulatory Commission United States government agency

The Nuclear Regulatory Commission (NRC) is an independent agency of the United States government tasked with protecting public health and safety related to nuclear energy. Established by the Energy Reorganization Act of 1974, the NRC began operations on January 19, 1975 as one of two successor agencies to the United States Atomic Energy Commission. Its functions include overseeing reactor safety and security, administering reactor licensing and renewal, licensing radioactive materials, radionuclide safety, and managing the storage, security, recycling, and disposal of spent fuel.

Contents

History

Older studies

WASH-740 was a report published by the U.S. Atomic Energy Commission (USAEC) in 1957. This report, called "Theoretical Possibilities and Consequences of Major Accidents in Large Nuclear Power Plants", estimated maximum possible damage from a meltdown with no containment building at a large nuclear reactor.

WASH-1400, 'The Reactor Safety Study', was a report produced in 1975 for the Nuclear Regulatory Commission by a committee of specialists under Professor Norman Rasmussen. It "generated a storm of criticism in the years following its release". In the years immediately after its release, WASH-1400 was followed by a number of reports that either peer reviewed its methodology or offered their own judgments about probabilities and consequences of various events at commercial reactors. In at least a few instances, some offered critiques of the study's assumptions, methodology, calculations, peer review procedures, and objectivity. A succession of reports, including NUREG-1150, the State-of-the-Art Reactor Consequence Analyses and others, have carried-on the tradition of PRA and its application to commercial power plants.

CRAC-II is both a computer code and the 1982 report of the simulation results performed by Sandia National Laboratories for the Nuclear Regulatory Commission. The report is sometimes referred to as the CRAC-II report because it is the computer program used in the calculations, but the report is also known as the 1982 Sandia Siting Study or as NUREG/CR-2239. The computer program MACCS2 has since replaced CRAC-II for consequences of radioactive release.

See also

An incident response team or emergency response team (ERT) is a group of people who prepare for and respond to any emergency incident, such as a natural disaster or an interruption of business operations. Incident response teams are common in public service organizations as well as in organizations. This team is generally composed of specific members designated before an incident occurs, although under certain circumstances the team may be an ad hoc group of willing volunteers.

Nuclear power debate

The nuclear power debate is a long-running controversy about the risks and benefits of using nuclear reactors to generate electricity for civilian purposes. The debate about nuclear power peaked during the 1970s and 1980s, as more and more reactors were built and came online, and "reached an intensity unprecedented in the history of technology controversies" in some countries. Thereafter, the nuclear industry created jobs, focused on safety and public concerns mostly waned. In the last decade, however, with growing public awareness about climate change and the critical role that carbon dioxide and methane emissions plays in causing the heating of the earth's atmosphere, there's been a resurgence in the intensity nuclear power debate once again. Nuclear power advocates and those who are most concerned about climate change point to nuclear power's reliable, emission-free, high-density energy and a generation of young physicists and engineers working to bring a new generation of nuclear technology into existence to replace fossil fuels. On the other hand, skeptics can point to two frightening nuclear accidents, the Chernobyl disaster in 1986 and subsequently the Fukushima Daiichi nuclear disaster, combined with escalating acts of global terrorism, to argue against continuing use of the technology.

Related Research Articles

Three Mile Island accident nuclear accident

The Three Mile Island accident was the partial meltdown of reactor number 2 of Three Mile Island Nuclear Generating Station (TMI-2) in Dauphin County, Pennsylvania, near Harrisburg and subsequent radiation leak that occurred on March 28, 1979. It was the most significant accident in U.S. commercial nuclear power plant history. The incident was rated a five on the seven-point International Nuclear Event Scale: Accident with wider consequences.

Nuclear meltdown severe nuclear reactor accident that results in core damage from overheating

A nuclear meltdown is a severe nuclear reactor accident that results in core damage from overheating. The term nuclear meltdown is not officially defined by the International Atomic Energy Agency or by the Nuclear Regulatory Commission. However, it has been defined to mean the accidental melting of the core of a nuclear reactor, and is in common usage a reference to the core's either complete or partial collapse.

Nuclear and radiation accidents and incidents event that has led to significant consequences to people, the environment or the facility

A nuclear and radiation accident is defined by the International Atomic Energy Agency (IAEA) as "an event that has led to significant consequences to people, the environment or the facility." Examples include lethal effects to individuals, radioactive isotope to the environment, or reactor core melt." The prime example of a "major nuclear accident" is one in which a reactor core is damaged and significant amounts of radioactive isotopes are released, such as in the Chernobyl disaster in 1986.

H. B. Robinson Nuclear Generating Station nuclear power plant

The H. B. Robinson Steam Electric Station, Unit 2 is a nuclear power station located near Hartsville, South Carolina. The plant consists of one Westinghouse 735 MW pressurized water reactor. The site once included a coal-fired unit that generated 174 MW and a combustion turbine unit that generated 15 MW.

Peach Bottom Nuclear Generating Station nuclear power plant

Peach Bottom Atomic Power Station, a nuclear power plant, is located 50 miles (80 km) southeast of Harrisburg in Peach Bottom Township, York County, Pennsylvania, on the Susquehanna River three miles north of the Maryland border.

Chernobyl disaster nuclear accident at the Chernobyl Nuclear Power Plant in Ukraine

The Chernobyl disaster, also referred to as the Chernobyl accident, was a catastrophic nuclear accident. It occurred on 25–26 April 1986 in the No. 4 light water graphite moderated reactor at the Chernobyl Nuclear Power Plant near the now-abandoned town of Pripyat, in northern Ukrainian Soviet Socialist Republic, Soviet Union, approximately 104 km (65 mi) north of Kiev.

Price–Anderson Nuclear Industries Indemnity Act

The Price-Anderson Nuclear Industries Indemnity Act is a United States federal law, first passed in 1957 and since renewed several times, which governs liability-related issues for all non-military nuclear facilities constructed in the United States before 2026. The main purpose of the Act is to partially compensate the nuclear industry against liability claims arising from nuclear incidents while still ensuring compensation coverage for the general public. The Act establishes a no fault insurance-type system in which the first approximately $12.6 billion is industry-funded as described in the Act. Any claims above the $12.6 billion would be covered by a Congressional mandate to retroactively increase nuclear utility liability or would be covered by the federal government. At the time of the Act's passing, it was considered necessary as an incentive for the private production of nuclear power — this was because electric utilities viewed the available liability coverage as inadequate.

AP1000

The AP1000 is a nuclear power plant designed and sold by Westinghouse Electric Company. The plant is a pressurized water reactor with improved use of passive nuclear safety. The first AP1000 began operations in China at Sanmen Nuclear Power Station, where Unit 1 became the first AP1000 to achieve criticality in June 2018.

NUREG-1150 "Severe Accident Risks: An Assessment for Five U.S. Nuclear Power Plants", published December 1990 by the Nuclear Regulatory Commission (NRC) is a follow-up to the WASH-1400 and CRAC-II safety studies that employs the methodology of plant-specific Probabilistic Risk Assessment (PRA). The research team, led by Denwood Ross, Joseph Murphy, and Mark Cunningham, concluded that the current generation of nuclear power plants exceeded NRC safety goals.

Nuclear power in Sweden

Sweden began research into nuclear energy in 1947 with the establishment of the Atomic Energy Company, which originated in the ongoing military research and development at the Defence Institute FOA. In 1954, the country built its first small research heavy water reactor. It was followed by two heavy water reactors: Ågesta, a small heat and power reactor in 1964, and Marviken which was finished but never operated, due to several safety issues. Both were heavy water reactors, motivated by the option to use Swedish uranium without isotope enrichment. The option to use plutonium from power reactors was closed only in 1968 with the signing of the Non-Proliferation Treaty. The switch to light water reactors started a few years earlier with Oskarshamn 1.

Nuclear safety and security Nuclear safety is defined by the International Atomic Energy Agency

Nuclear safety is defined by the International Atomic Energy Agency (IAEA) as "The achievement of proper operating conditions, prevention of accidents or mitigation of accident consequences, resulting in protection of workers, the public and the environment from undue radiation hazards". The IAEA defines nuclear security as "The prevention and detection of and response to, theft, sabotage, unauthorized access, illegal transfer or other malicious acts involving nuclear material, other radioactive substances or their associated facilities".

Nuclear safety in the United States US safety regulations for nuclear power and weapons

Nuclear safety in the United States is governed by federal regulations issued by the Nuclear Regulatory Commission (NRC). The NRC regulates all nuclear plants and materials in the United States except for nuclear plants and materials controlled by the U.S. government, as well those powering naval vessels.

Nuclear reactor accidents in the United States

The United States Government Accountability Office reported more than 150 incidents from 2001 to 2006 of nuclear plants not performing within acceptable safety guidelines. According to a 2010 survey of energy accidents, there have been at least 56 accidents at nuclear reactors in the United States. The most serious of these was the Three Mile Island accident in 1979. Davis-Besse Nuclear Power Plant has been the source of two of the top five most dangerous nuclear incidents in the United States since 1979. Relatively few accidents have involved fatalities.

Fukushima Daiichi nuclear disaster nuclear disaster in Japan

The Fukushima Daiichi nuclear disaster was an energy accident at the Fukushima Daiichi Nuclear Power Plant in Ōkuma, Fukushima Prefecture, initiated primarily by the tsunami following the Tōhoku earthquake on 11 March 2011. Immediately after the earthquake, the active reactors automatically shut down their sustained fission reactions. However, the ensuing tsunami disabled the emergency generators that would have provided power to control and operate the pumps necessary to cool the reactors. The insufficient cooling led to three nuclear meltdowns, hydrogen-air explosions, and the release of radioactive material in Units 1, 2 and 3 from 12 to 15 March. Loss of cooling also raised concerns over the recently loaded spent fuel pool of Reactor 4, which increased in temperature on 15 March due to the decay heat from the freshly added spent fuel rods but did not boil down to exposure.

A unit of the United States Nuclear Regulatory Commission authorized under the Atomic Energy Act, the Atomic Safety and Licensing Board Panel consists of administrative law judges who hear complaints similar to ordinary district court except for subject matter jurisdiction which pertains to matters under the Act, specifically, nuclear safety issues pertaining to licensed nuclear power plants. There are in excess of one hundred such plants in the United States, some of which are subject to litigation before the panel.

References