Stationary fuel-cell applications

Last updated

Stationary fuel-cell applications (or stationary fuel-cell power systems) are applications for fuel cells that are either connected to the electric grid (distributed generation) to provide supplemental power and as emergency power system for critical areas, or installed as a grid-independent generator for on-site service.

Applied science is the application of existing scientific knowledge to practical applications, like technology or inventions.

Fuel cell Device that converts the chemical energy from a fuel into electricity

A fuel cell is an electrochemical cell that converts the chemical energy of a fuel and an oxidizing agent into electricity through a pair of redox reactions. Fuel cells are different from most batteries in requiring a continuous source of fuel and oxygen to sustain the chemical reaction, whereas in a battery the chemical energy usually comes from metals and their ions or oxides that are commonly already present in the battery, except in flow batteries. Fuel cells can produce electricity continuously for as long as fuel and oxygen are supplied.

Distributed generation, also distributed energy, on-site generation (OSG) or district/decentralized energy is electrical generation and storage performed by a variety of small, grid-connected or distribution system connected devices referred to as distributed energy resources (DER).

Contents

Applications

In 2012 more than 45700 fuel-cell systems were shipped all over the world — in residential homes, hospitals, nursing homes, hotels, office buildings, schools, utility power plants. [1]

Micro combined heat and power

Micro combined heat and power, "mCHP" or "micro cogeneration" is a so-called distributed energy resource (DER). The installation is usually less than 5 kWe in a house or small business. Instead of burning fuel to merely heat space or water, some of the energy is converted to electricity in addition to heat. This electricity can be used within the home or business or, if permitted by the grid management, sold back into the electric power grid.

Micro combined heat and power

Micro combined heat and power or micro-CHP or mCHP is an extension of the idea of cogeneration to the single/multi family home or small office building in the range of up to 50 kW. Local generation has the potential for a higher efficiency than traditional grid-level generators since it lacks the 8-10% energy losses from transporting electricity over long distances. It also lacks the 10–15% energy losses from heat transfer in district heating networks due to the difference between the thermal energy carrier and the colder external environment. The most common systems use natural gas as their primary energy source and emit carbon dioxide.

Delta-ee consultants stated in 2013 that with 64% of global sales the fuel cell micro-combined heat and power passed the conventional systems in sales in 2012. [2] In 2012, over 20000 units were sold in Japan as part of the Ene Farm project. With a Lifetime of around 60,000 hours. For PEM fuel cell units, which shut down at night, this equates to an estimated lifetime of between ten and fifteen years. [3] For a price of $22,600 before installation. [4] For 2013 a state subsidy for 50000 units is in place. [5]

Japan Country in East Asia

Japan is an island country in East Asia. Located in the Pacific Ocean, it lies off the eastern coast of the Asian continent and stretches from the Sea of Okhotsk in the north to the East China Sea and the Philippine Sea in the south.

A product's service life is its period of use in service. It has been defined as "a product's total life in use from the point of sale to the point of discard" and distinguished from replacement life,"the period after which the initial purchaser returns to the shop for a replacement." Determining a product´s expected service life as part of business policy involves using tools and calculations from maintainability and reliability analysis. Service life represents a commitment made by the item's manufacturer and is usually specified as a median. It is the time that any manufactured item can be expected to be 'serviceable' or supported by its manufacturer.

Emergency power systems

Emergency power systems are a type of fuel cell system, which may include lighting, generators and other apparatus, to provide backup resources in a crisis or when regular systems fail. They find uses in a wide variety of settings from residential homes to hospitals, scientific laboratories, data centers, [6] telecommunication [7] equipment and modern naval ships.

Hospital health care institution

A hospital is a health care institution providing patient treatment with specialized medical and nursing staff and medical equipment. The best-known type of hospital is the general hospital, which typically has an emergency department to treat urgent health problems ranging from fire and accident victims to a sudden illness. A district hospital typically is the major health care facility in its region, with a large number of beds for intensive care and additional beds for patients who need long-term care. Specialized hospitals include trauma centers, rehabilitation hospitals, children's hospitals, seniors' (geriatric) hospitals, and hospitals for dealing with specific medical needs such as psychiatric treatment and certain disease categories. Specialized hospitals can help reduce health care costs compared to general hospitals. Hospitals are classified as general, specialty, or government depending on the sources of income received.

Data center building or room where computer servers and related equipment are operated

A data center or data centre is a building, dedicated space within a building, or a group of buildings used to house computer systems and associated components, such as telecommunications and storage systems.

Telecommunication transmission of information between locations using electromagnetics

Telecommunication is the transmission of signs, signals, messages, words, writings, images and sounds or information of any nature by wire, radio, optical or other electromagnetic systems. Telecommunication occurs when the exchange of information between communication participants includes the use of technology. It is transmitted either electrically over physical media, such as cables, or via electromagnetic radiation. Such transmission paths are often divided into communication channels which afford the advantages of multiplexing. Since the Latin term communicatio is considered the social process of information exchange, the term telecommunications is often used in its plural form because it involves many different technologies.

Uninterrupted power supply

An uninterruptible power supply (UPS) provides emergency power and, depending on the topology, provide line regulation as well to connected equipment by supplying power from a separate source when utility power is not available. It differs from an auxiliary power supply or standby generator, which does not provide instant protection from a momentary power interruption.

Uninterruptible power supply electrical device that uses batteries to prevent a power flow interruption

An uninterruptible power supply or uninterruptible power source (UPS) is an electrical apparatus that provides emergency power to a load when the input power source or mains power fails. A UPS differs from an auxiliary or emergency power system or standby generator in that it will provide near-instantaneous protection from input power interruptions, by supplying energy stored in batteries, supercapacitors, or flywheels. The on-battery run-time of most uninterruptible power sources is relatively short but sufficient to start a standby power source or properly shut down the protected equipment. It is a type of continual power system.

Emergency power system

An emergency power system is an independent source of electrical power that supports important electrical systems on loss of normal power supply. A standby power system may include a standby generator, batteries and other apparatus. Emergency power systems are installed to protect life and property from the consequences of loss of primary electric power supply. It is a type of continual power system.

Codes and standards

Stationary fuel cell applications is a classification in FC hydrogen codes and standards and fuel cell codes and standards. The other main standards are Portable fuel cell applications and Fuel cell vehicle.

See also

Related Research Articles

Electricity generation process of generating electrical power

Electricity generation is the process of generating electric power from sources of primary energy. For electric utilities in the electric power industry, it is the first stage in the delivery of electricity to end users, the other stages being transmission, distribution, energy storage and recovery, using the pumped-storage method.

Stationary engine

A stationary engine is an engine whose framework does not move. They are used to drive immobile equipment, such as pumps, generators, mills or factory machinery. The term usually refers to large immobile reciprocating engines, principally stationary steam engines and, to some extent, stationary internal combustion engines. Other large immobile power sources, such as steam turbines, gas turbines, and large electric motors, are categorized separately.

Cogeneration simultaneous generation of electricity, and/or heating, or cooling, or industrial chemicals

Cogeneration or combined heat and power (CHP) is the use of a heat engine or power station to generate electricity and useful heat at the same time. Trigeneration or combined cooling, heat and power (CCHP) refers to the simultaneous generation of electricity and useful heating and cooling from the combustion of a fuel or a solar heat collector. The terms cogeneration and trigeneration can be also applied to the power systems generating simultaneously electricity, heat, and industrial chemicals – e.g., syngas or pure hydrogen.

Grid energy storage

Grid energy storage is a collection of methods used to store electrical energy on a large scale within an electrical power grid. Electrical energy is stored during times when production exceeds consumption, and returned to the grid when production falls below consumption.

Off-the-grid is a system and lifestyle designed to help people function without the support of remote infrastructure, such as an electrical grid. In electricity, off-grid can be stand-alone power system or microgrids typically to provide a smaller community with electricity.

Microgeneration small-scale generation of heat and electric power

Microgeneration is the small-scale generation of heat and electric power by individuals, small businesses and communities to meet their own needs, as alternatives or supplements to traditional centralized grid-connected power. Although this may be motivated by practical considerations, such as unreliable grid power or long distance from the electrical grid, the term is mainly used currently for environmentally conscious approaches that aspire to zero or low-carbon footprints or cost reduction. It differs from micropower in that it is principally concerned with fixed power plants rather than for use with mobile devices.

Diesel generator combination of a diesel engine with an electrical generator

A diesel generator is the combination of a diesel engine with an electric generator to generate electrical energy. This is a specific case of engine-generator. A diesel compression-ignition engine is usually designed to run on diesel fuel, but some types are adapted for other liquid fuels or natural gas.

Engine-generator combination of an electrical generator and an engine in a single part

An engine-generator or portable generator is the combination of an electrical generator and an engine mounted together to form a single piece of equipment. This combination is also called an engine-generator set or a gen-set. In many contexts, the engine is taken for granted and the combined unit is simply called a generator.

Solar power conversion of energy from sunlight into electricity

Solar power is the conversion of energy from sunlight into electricity, either directly using photovoltaics (PV), indirectly using concentrated solar power, or a combination. Concentrated solar power systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. Photovoltaic cells convert light into an electric current using the photovoltaic effect.

Photovoltaic system power system designed to supply usable solar power

A photovoltaic system, also PV system or solar power system, is a power system designed to supply usable solar power by means of photovoltaics. It consists of an arrangement of several components, including solar panels to absorb and convert sunlight into electricity, a solar inverter to change the electric current from DC to AC, as well as mounting, cabling, and other electrical accessories to set up a working system. It may also use a solar tracking system to improve the system's overall performance and include an integrated battery solution, as prices for storage devices are expected to decline. Strictly speaking, a solar array only encompasses the ensemble of solar panels, the visible part of the PV system, and does not include all the other hardware, often summarized as balance of system (BOS). Moreover, PV systems convert light directly into electricity and shouldn't be confused with other technologies, such as concentrated solar power or solar thermal, used for heating and cooling.

UltraBattery is a hybrid energy storage device invented by Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO). UltraBattery combines ultracapacitor technology with lead-acid battery technology in a single cell with a common electrolyte.

A home fuel cell or a residential fuel cell is a scaled down version of industrial stationary fuel cell for primary or backup power generation. These fuel cells are usually based on combined heat and power-CHP or micro combined heat and power MicroCHP technology, generating both power and heated water or air.

The Bloom Energy Server is a solid oxide fuel cell (SOFC) power generator made by Bloom Energy, of Sunnyvale, California, that takes a variety of input fuels, including liquid or gaseous hydrocarbons produced from biological sources, to produce electricity at or near the site where it will be used. It can withstand temperatures of up to 1,800 °F (980 °C). According to the company, a single cell generates 25 watts.

United States hydrogen policy

The principle of a fuel cell was discovered by Christian Friedrich Schönbein in 1838, and the first fuel cell was constructed by Sir William Robert Grove in 1839. The fuel cells made at this time were most similar to today's phosphoric acid fuel cells. Most hydrogen fuel cells today are of the proton exchange membrane (PEM) type. A PEM converts the chemical energy released during the electrochemical reaction of hydrogen and oxygen into electrical energy. The Energy Policy Act of 1992 was the first national legislation that called for large-scale hydrogen research. A five-year program was conducted that investigated the production of hydrogen from renewable energy sources and the feasibility of existing natural gas pipelines to carry hydrogen. It also called for the research into hydrogen storage systems for electric vehicles and the development of fuel cells suitable to power an electric motor vehicle.

Horizon Fuel Cell Technologies

Horizon Fuel Cell Technologies is a company founded in 2003 in Singapore, serving a diverse range of industries with various fuel cell electric energy solutions and products. Horizon Fuel Cell Technologies products and solutions are enabled by in-house manufacturing of micro-size to multi-kilowatt scale proton exchange membrane fuel cells, combined with a choice of proprietary on-demand hydrogen storage and production methods including hydrolysis, electrolysis and reformer-based solutions.

References