In enumerative geometry, Steiner's conic problem is the problem of finding the number of smooth conics tangent to five given conics in the plane in general position. If the problem is considered in the complex projective plane CP2, the correct solution is 3264 [1] . The problem is named after Jakob Steiner who first posed it and who gave an incorrect solution in 1848.
Steiner claimed that the number of conics tangent to 5 given conics in general position is 7776 = 65, but later realized this was wrong. [2] The correct number 3264 was found in about 1859 by Ernest de Jonquières who did not publish because of Steiner's reputation, and by Chasles using his theory of characteristics [3] , and by Berner in 1865. However these results, like many others in classical intersection theory, do not seem to have been given complete proofs until the work of Fulton and MacPherson in about 1978.
The space of (possibly degenerate) conics in the complex projective plane CP2 can be identified with the complex projective space CP5 (since each conic is defined by a homogeneous degree-2 polynomial in three variables, with 6 complex coefficients, and multiplying such a polynomial by a non-zero complex number does not change the conic). Steiner observed that the conics tangent to a given conic form a degree 6 hypersurface in CP5. So the conics tangent to 5 given conics correspond to the intersection points of 5 degree 6 hypersurfaces, and by Bézout's theorem the number of intersection points of 5 generic degree 6 hypersurfaces is 65 = 7776, which was Steiner's incorrect solution. The reason this is wrong is that the five degree 6 hypersurfaces are not in general position and have a common intersection in the Veronese surface, corresponding to the set of double lines in the plane, all of which have double intersection points with the 5 conics. In particular the intersection of these 5 hypersurfaces is not even 0-dimensional but has a 2-dimensional component. So to find the correct answer, one has to somehow eliminate the plane of spurious degenerate conics from this calculation.
One way of eliminating the degenerate conics is to blow up CP5 along the Veronese surface. The Chow ring of the blowup is generated by H and E, where H is the total transform of a hyperplane and E is the exceptional divisor. The total transform of a degree 6 hypersurface is 6H, and Steiner calculated (6H)5 = 65P as H5=P (where P is the class of a point in the Chow ring). However the number of conics is not (6H)5 but (6H−2E)5 because the strict transform of the hypersurface of conics tangent to a given conic is 6H−2E.
Suppose that L = 2H−E is the strict transform of the conics tangent to a given line. Then the intersection numbers of H and L are given by H5=1P, H4L=2P, H3L2=4P, H2L3=4P, H1L4=2P, L5=1P. So we have (6H−2E)5 = (2H+2L)5 = 3264P.
Fulton & MacPherson gave a precise description of exactly what "general position" means (although their two propositions about this are not quite right, and are corrected in a note on page 29 of their paper). [4] If the five conics have the properties that
then the total number of conics C tangent to all 5 (counted with multiplicities) is 3264. Here the multiplicity is given by the product over all 5 conics Ci of (4 − number of intersection points of C and Ci). In particular if C intersects each of the five conics in exactly 3 points (one double point of tangency and two others) then the multiplicity is 1, and if this condition always holds then there are exactly 3264 conics tangent to the 5 given conics.
Over other algebraically closed fields the answer is similar, unless the field has characteristic 2 in which case the number of conics is 51 rather than 3264.
Bézout's theorem is a statement in algebraic geometry concerning the number of common zeros of n polynomials in n indeterminates. In its original form the theorem states that in general the number of common zeros equals the product of the degrees of the polynomials. It is named after Étienne Bézout.
In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections. It provides easy ways to calculate a conic section's axis, vertices, tangents and the pole and polar relationship between points and lines of the plane determined by the conic. The technique does not require putting the equation of a conic section into a standard form, thus making it easier to investigate those conic sections whose axes are not parallel to the coordinate system.
In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, projective space, and a selective set of basic geometric concepts. The basic intuitions are that projective space has more points than Euclidean space, for a given dimension, and that geometric transformations are permitted that transform the extra points to Euclidean points, and vice versa.
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.
In algebraic geometry and computational geometry, general position is a notion of genericity for a set of points, or other geometric objects. It means the general case situation, as opposed to some more special or coincidental cases that are possible, which is referred to as special position. Its precise meaning differs in different settings.
In projective geometry, Pascal's theorem states that if six arbitrary points are chosen on a conic and joined by line segments in any order to form a hexagon, then the three pairs of opposite sides of the hexagon meet at three points which lie on a straight line, called the Pascal line of the hexagon. It is named after Blaise Pascal.
Michel Floréal Chasles was a French mathematician.
In Euclidean plane geometry, Apollonius's problem is to construct circles that are tangent to three given circles in a plane (Figure 1). Apollonius of Perga posed and solved this famous problem in his work Ἐπαφαί ; this work has been lost, but a 4th-century AD report of his results by Pappus of Alexandria has survived. Three given circles generically have eight different circles that are tangent to them (Figure 2), a pair of solutions for each way to divide the three given circles in two subsets.
In geometry, a pencil is a family of geometric objects with a common property, for example the set of lines that pass through a given point in a plane, or the set of circles that pass through two given points in a plane.
In mathematics, the Cayley–Bacharach theorem is a statement about cubic curves in the projective plane P2. The original form states:
In mathematics, enumerative geometry is the branch of algebraic geometry concerned with counting numbers of solutions to geometric questions, mainly by means of intersection theory.
In mathematics, a Plücker formula, named after Julius Plücker, is one of a family of formulae, of a type first developed by Plücker in the 1830s, that relate certain numeric invariants of algebraic curves to corresponding invariants of their dual curves. The invariant called the genus, common to both the curve and its dual, is connected to the other invariants by similar formulae. These formulae, and the fact that each of the invariants must be a positive integer, place quite strict limitations on their possible values.
In projective geometry, a dual curve of a given plane curve C is a curve in the dual projective plane consisting of the set of lines tangent to C. There is a map from a curve to its dual, sending each point to the point dual to its tangent line. If C is algebraic then so is its dual and the degree of the dual is known as the class of the original curve. The equation of the dual of C, given in line coordinates, is known as the tangential equation of C. Duality is an involution: the dual of the dual of C is the original curve C.
In algebraic geometry, the first polar, or simply polar of an algebraic plane curve C of degree n with respect to a point Q is an algebraic curve of degree n−1 which contains every point of C whose tangent line passes through Q. It is used to investigate the relationship between the curve and its dual, for example in the derivation of the Plücker formulas.
In algebraic geometry, the conic sections in the projective plane form a linear system of dimension five, as one sees by counting the constants in the degree two equations. The condition to pass through a given point P imposes a single linear condition, so that conics C through P form a linear system of dimension 4. Other types of condition that are of interest include tangency to a given line L.
A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.
In Euclidean and projective geometry, five points determine a conic, just as two (distinct) points determine a line. There are additional subtleties for conics that do not exist for lines, and thus the statement and its proof for conics are both more technical than for lines.
The terminology of algebraic geometry changed drastically during the twentieth century, with the introduction of the general methods, initiated by David Hilbert and the Italian school of algebraic geometry in the beginning of the century, and later formalized by André Weil, Jean-Pierre Serre and Alexander Grothendieck. Much of the classical terminology, mainly based on case study, was simply abandoned, with the result that books and papers written before this time can be hard to read. This article lists some of this classical terminology, and describes some of the changes in conventions.
The Steiner conic or more precisely Steiner's generation of a conic, named after the Swiss mathematician Jakob Steiner, is an alternative method to define a non-degenerate projective conic section in a projective plane over a field.