Stretch rule

Last updated

In classical mechanics, the stretch rule (sometimes referred to as Routh's rule) states that the moment of inertia of a rigid object is unchanged when the object is stretched parallel to an axis of rotation that is a principal axis, provided that the distribution of mass remains unchanged except in the direction parallel to the axis. [1] This operation leaves cylinders oriented parallel to the axis unchanged in radius.

Classical mechanics sub-field of mechanics, which is concerned with the set of physical laws describing the motion of bodies under the action of a system of forces

Classical mechanics describes the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars and galaxies.

Edward Routh 19th-century English mathematician and teacher

Edward John Routh, was an English mathematician, noted as the outstanding coach of students preparing for the Mathematical Tripos examination of the University of Cambridge in its heyday in the middle of the nineteenth century. He also did much to systematise the mathematical theory of mechanics and created several ideas critical to the development of modern control systems theory.

Moment of inertia moment of inertia

The moment of inertia, otherwise known as the angular mass or rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular acceleration about a rotational axis; similar to how mass determines the force needed for a desired acceleration. It depends on the body's mass distribution and the axis chosen, with larger moments requiring more torque to change the body's rotation rate. It is an extensive (additive) property: for a point mass the moment of inertia is just the mass times the square of the perpendicular distance to the rotation axis. The moment of inertia of a rigid composite system is the sum of the moments of inertia of its component subsystems. Its simplest definition is the second moment of mass with respect to distance from an axis. For bodies constrained to rotate in a plane, only their moment of inertia about an axis perpendicular to the plane, a scalar value, matters. For bodies free to rotate in three dimensions, their moments can be described by a symmetric 3 × 3 matrix, with a set of mutually perpendicular principal axes for which this matrix is diagonal and torques around the axes act independently of each other.

This rule can be applied with the parallel axis theorem and the perpendicular axes rule to find moments of inertia for a variety of shapes.

The parallel axis theorem, also known as Huygens–Steiner theorem, or just as Steiner's theorem, named after Christiaan Huygens and Jakob Steiner, can be used to determine the moment of inertia or the second moment of area of a rigid body about any axis, given the body's moment of inertia about a parallel axis through the object's center of gravity and the perpendicular distance between the axes.

Derivation

The (scalar) moment of inertia of a rigid body around the z-axis is given by:

Where is the distance of a point from the z-axis. We can expand as follows, since we are dealing with stretching over the z-axis only:

Here, is the body's height. Stretching the object by a factor of along the z-axis is equivalent to dividing the mass density by (meaning ), as well as integrating over new limits and (the new height of the object), thus leaving the total mass unchanged. This means the new moment of inertia will be:

Related Research Articles

Angular momentum Measure of the extent to which an object will continue to rotate in the absence of an applied torque

In physics, angular momentum is the rotational equivalent of linear momentum. It is an important quantity in physics because it is a conserved quantity—the total angular momentum of a closed system remains constant.

Sphere round geometrical and circular object in three-dimensional space; special case of spheroid

A sphere is a perfectly round geometrical object in three-dimensional space that is the surface of a completely round ball.

In physics, a moment is an expression involving the product of a distance and another physical quantity, and in this way it accounts for how the physical quantity is located or arranged.

This is a list of some vector calculus formulae for working with common curvilinear coordinate systems.

Dynamical simulation, in computational physics, is the simulation of systems of objects that are free to move, usually in three dimensions according to Newton's laws of dynamics, or approximations thereof. Dynamical simulation is used in computer animation to assist animators to produce realistic motion, in industrial design, and in video games. Body movement is calculated using time integration methods.

In mathematics—in particular, in multivariable calculus—a volume integral refers to an integral over a 3-dimensional domain, that is, it is a special case of multiple integrals. Volume integrals are especially important in physics for many applications, for example, to calculate flux densities.

Bending stress made by bending moment

In applied mechanics, bending characterizes the behavior of a slender structural element subjected to an external load applied perpendicularly to a longitudinal axis of the element.

The 2nd moment of area, or second area moment and also known as the area moment of inertia is a geometrical property of an area which reflects how its points are distributed with regard to an arbitrary axis. The second moment of area is typically denoted with either an or with a . In both cases, it is calculated with a multiple integral over the object in question. Its dimension is L (length) to the fourth power. Its unit of dimension when working with the International System of Units is meters to the fourth power, m4, or inches to the fourth power, in4, when working in the Imperial System of Units.

Multiple integral definite integral over a multi-dimensional region of a function of several variables

The multiple integral is a definite integral of a function of more than one real variable, for example, f(x, y) or f(x, y, z). Integrals of a function of two variables over a region in R2 are called double integrals, and integrals of a function of three variables over a region of R3 are called triple integrals. For multiple integrals of a single-variable function, see the Cauchy formula for repeated integration.

Planar lamina

In mathematics, a planar lamina is a closed set in a plane of mass and surface density such that:

The polar moment of inertia, also known as second polar moment of area, is a quantity used to describe resistance to torsional deformation (deflection), in cylindrical objects with an invariant cross-section and no significant warping or out-of-plane deformation. It is a constituent of the second moment of area, linked through the perpendicular axis theorem. Where the planar second moment of area describes an object's resistance to deflection (bending) when subjected to a force applied to a plane parallel to the central axis, the polar second moment of area describes an object's resistance to deflection when subjected to a moment applied in a plane perpendicular to the object's central axis. Similar to planar second moment of area calculations, the polar second moment of area is often denoted as . While several engineering textbooks and academic publications also denote it as or , this designation should be given careful attention so that it does not become confused with the torsion constant, , used for non-cylindrical objects.

Neutral axis

The neutral axis is an axis in the cross section of a beam or shaft along which there are no longitudinal stresses or strains. If the section is symmetric, isotropic and is not curved before a bend occurs, then the neutral axis is at the geometric centroid. All fibers on one side of the neutral axis are in a state of tension, while those on the opposite side are in compression.

In physics, the perpendicular axis theorem can be used to determine the second polar moment of area of a rigid object that lies entirely within a plane, about an axis perpendicular to the plane, given the moments of inertia of the object about two perpendicular axes lying within the plane. The axes must all pass through a single point in the plane.

In the mathematical theory of conformal and quasiconformal mappings, the extremal length of a collection of curves is a measure of the size of that is invariant under conformal mappings. More specifically, suppose that is an open set in the complex plane and is a collection of paths in and is a conformal mapping. Then the extremal length of is equal to the extremal length of the image of under . One also works with the conformal modulus of , the reciprocal of the extremal length. The fact that extremal length and conformal modulus are conformal invariants of makes them useful tools in the study of conformal and quasi-conformal mappings. One also works with extremal length in dimensions greater than two and certain other metric spaces, but the following deals primarily with the two dimensional setting.

In classical mechanics, Euler's laws of motion are equations of motion which extend Newton's laws of motion for point particle to rigid body motion. They were formulated by Leonhard Euler about 50 years after Isaac Newton formulated his laws.

A column can buckle due to its own weight with no other direct forces acting on it, in a failure mode called self-buckling. In conventional column buckling problems, the self-weight is often neglected since it is assumed to be small when compared to the applied axial loads. However, when this assumption is not valid, it is important to take the self-buckling into account.

References

  1. Smith, J.O. (2010). "Stretch Rule". Physical Audio Signal Processing. W3K Publishing. Retrieved 26 November 2012.