Theorem on friends and strangers

Last updated
78 of the 156 possible friends-strangers graphs with 6 nodes. The other 78 can be obtained by reversing the red and blue colours of each graph. For each graph the red/blue nodes shows a sample triplet of mutual friends/strangers. Friends strangers graph.gif
78 of the 156 possible friends-strangers graphs with 6 nodes. The other 78 can be obtained by reversing the red and blue colours of each graph. For each graph the red/blue nodes shows a sample triplet of mutual friends/strangers.

The theorem on friends and strangers is a mathematical theorem in an area of mathematics called Ramsey theory.

Contents

Statement

Suppose a party has six people. Consider any two of them. They might be meeting for the first time—in which case we will call them mutual strangers; or they might have met before—in which case we will call them mutual acquaintances. The theorem says:

In any party of six people, at least three of them are (pairwise) mutual strangers or mutual acquaintances.

Conversion to a graph-theoretic setting

A proof of the theorem requires nothing but a three-step logic. It is convenient to phrase the problem in graph-theoretic language.

Suppose a graph has 6 vertices and every pair of (distinct) vertices is joined by an edge. Such a graph is called a complete graph (because there cannot be any more edges). A complete graph on vertices is denoted by the symbol .

Now take a . It has 15 edges in all. Let the 6 vertices stand for the 6 people in our party. Let the edges be coloured red or blue depending on whether the two people represented by the vertices connected by the edge are mutual strangers or mutual acquaintances, respectively. The theorem now asserts:

No matter how you colour the 15 edges of a with red and blue, you cannot avoid having either a red triangle—that is, a triangle all of whose three sides are red, representing three pairs of mutual strangers—or a blue triangle, representing three pairs of mutual acquaintances. In other words, whatever colours you use, there will always be at least one monochromatic triangle ( that is, a triangle all of whose edges have the same color ).

Proof

Choose any one vertex; call it P. There are five edges leaving P. They are each coloured red or blue. The pigeonhole principle says that at least three of them must be of the same colour; for if there are less than three of one colour, say red, then there are at least three that are blue.

Let A, B, C be the other ends of these three edges, all of the same colour, say blue. If any one of AB, BC, CA is blue, then that edge together with the two edges from P to the edge's endpoints forms a blue triangle. If none of AB, BC, CA is blue, then all three edges are red and we have a red triangle, namely, ABC.

Ramsey's paper

The utter simplicity of this argument, which so powerfully produces a very interesting conclusion, is what makes the theorem appealing. In 1930, in a paper entitled 'On a Problem of Formal Logic,' Frank P. Ramsey proved a very general theorem (now known as Ramsey's theorem) of which this theorem is a simple case. This theorem of Ramsey forms the foundation of the area known as Ramsey theory in combinatorics.

Boundaries to the theorem

A 2-colouring of K5 with no monochromatic K3 RamseyTheory K5 no mono K3.svg
A 2-colouring of K5 with no monochromatic K3

The conclusion to the theorem does not hold if we replace the party of six people by a party of less than six. To show this, we give a coloring of K5 with red and blue that does not contain a triangle with all edges the same color. We draw K5 as a pentagon surrounding a star (a pentagram). We color the edges of the pentagon red and the edges of the star blue. Thus, 6 is the smallest number for which we can claim the conclusion of the theorem. In Ramsey theory, we write this fact as:

Related Research Articles

<span class="mw-page-title-main">Four color theorem</span> Statement in mathematics

In mathematics, the four color theorem, or the four color map theorem, states that no more than four colors are required to color the regions of any map so that no two adjacent regions have the same color. Adjacent means that two regions share a common boundary curve segment, not merely a corner where three or more regions meet. It was the first major theorem to be proved using a computer. Initially, this proof was not accepted by all mathematicians because the computer-assisted proof was infeasible for a human to check by hand. The proof has gained wide acceptance since then, although some doubters remain.

In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph or planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.

<span class="mw-page-title-main">Complete graph</span> Graph in which every two vertices are adjacent

In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices is connected by a pair of unique edges.

Ramsey theory, named after the British mathematician and philosopher Frank P. Ramsey, is a branch of the mathematical field of combinatorics that focuses on the appearance of order in a substructure given a structure of a known size. Problems in Ramsey theory typically ask a question of the form: "how big must some structure be to guarantee that a particular property holds?"

In mathematics, the probabilistic method is a nonconstructive method, primarily used in combinatorics and pioneered by Paul Erdős, for proving the existence of a prescribed kind of mathematical object. It works by showing that if one randomly chooses objects from a specified class, the probability that the result is of the prescribed kind is strictly greater than zero. Although the proof uses probability, the final conclusion is determined for certain, without any possible error.

In combinatorics, Ramsey's theorem, in one of its graph-theoretic forms, states that one will find monochromatic cliques in any edge labelling (with colours) of a sufficiently large complete graph. To demonstrate the theorem for two colours (say, blue and red), let r and s be any two positive integers. Ramsey's theorem states that there exists a least positive integer R(r, s) for which every blue-red edge colouring of the complete graph on R(r, s) vertices contains a blue clique on r vertices or a red clique on s vertices. (Here R(r, s) signifies an integer that depends on both r and s.)

In graph theory, an undirected graph H is called a minor of the graph G if H can be formed from G by deleting edges, vertices and by contracting edges.

<span class="mw-page-title-main">Graph coloring</span> Methodic assignment of colors to elements of a graph

In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color.

<span class="mw-page-title-main">Sperner's lemma</span> Theorem on triangulation graph colorings

In mathematics, Sperner's lemma is a combinatorial result on colorings of triangulations, analogous to the Brouwer fixed point theorem, which is equivalent to it. It states that every Sperner coloring of a triangulation of an -dimensional simplex contains a cell whose vertices all have different colors.

In mathematics, the Burr–Erdős conjecture was a problem concerning the Ramsey number of sparse graphs. The conjecture is named after Stefan Burr and Paul Erdős, and is one of many conjectures named after Erdős; it states that the Ramsey number of graphs in any sparse family of graphs should grow linearly in the number of vertices of the graph.

<span class="mw-page-title-main">Kempe chain</span> Method used in proof of the four-colour theorem

In mathematics, a Kempe chain is a device used mainly in the study of the four colour theorem. Intuitively, it is a connected chain of points on a graph with alternating colors.

<span class="mw-page-title-main">Triangle-free graph</span> Graph without triples of adjacent vertices

In the mathematical area of graph theory, a triangle-free graph is an undirected graph in which no three vertices form a triangle of edges. Triangle-free graphs may be equivalently defined as graphs with clique number ≤ 2, graphs with girth ≥ 4, graphs with no induced 3-cycle, or locally independent graphs.

<span class="mw-page-title-main">Handshaking lemma</span> Every graph has evenly many odd vertices

In graph theory, a branch of mathematics, the handshaking lemma is the statement that, in every finite undirected graph, the number of vertices that touch an odd number of edges is even. For example, if there is a party of people who shake hands, the number of people who shake an odd number of other people's hands is even. The handshaking lemma is a consequence of the degree sum formula, also sometimes called the handshaking lemma, according to which the sum of the degrees equals twice the number of edges in the graph. Both results were proven by Leonhard Euler (1736) in his famous paper on the Seven Bridges of Königsberg that began the study of graph theory.

<span class="mw-page-title-main">Wagner graph</span> Cubic graph with 8 vertices and 12 edges

In the mathematical field of graph theory, the Wagner graph is a 3-regular graph with 8 vertices and 12 edges. It is the 8-vertex Möbius ladder graph.

In computer science, a property testing algorithm for a decision problem is an algorithm whose query complexity to its input is much smaller than the instance size of the problem. Typically property testing algorithms are used to distinguish if some combinatorial structure S satisfies some property P, or is "far" from having this property, using only a small number of "local" queries to the object.

In the mathematical discipline of graph theory, the Erdős–Pósa theorem, named after Paul Erdős and Lajos Pósa, relates two parameters of a graph:

<span class="mw-page-title-main">Herschel graph</span> Bipartite non-Hamiltonian polyhedral graph

In graph theory, a branch of mathematics, the Herschel graph is a bipartite undirected graph with 11 vertices and 18 edges. It is a polyhedral graph, and is the smallest polyhedral graph that does not have a Hamiltonian cycle, a cycle passing through all its vertices. It is named after British astronomer Alexander Stewart Herschel, because of Herschel's studies of Hamiltonian cycles in polyhedral graphs.

<span class="mw-page-title-main">Topological graph</span>

In mathematics, a topological graph is a representation of a graph in the plane, where the vertices of the graph are represented by distinct points and the edges by Jordan arcs joining the corresponding pairs of points. The points representing the vertices of a graph and the arcs representing its edges are called the vertices and the edges of the topological graph. It is usually assumed that any two edges of a topological graph cross a finite number of times, no edge passes through a vertex different from its endpoints, and no two edges touch each other. A topological graph is also called a drawing of a graph.

<span class="mw-page-title-main">Kelmans–Seymour conjecture</span>

In graph theory, the Kelmans–Seymour conjecture states that every 5-vertex-connected graph that is not planar contains a subdivision of the 5-vertex complete graph K5. It is named for Paul Seymour and Alexander Kelmans, who independently described the conjecture; Seymour in 1977 and Kelmans in 1979. A proof was announced in 2016, and published in four papers in 2020.

In graph theory, the graph removal lemma states that when a graph contains few copies of a given subgraph, then all of the copies can be eliminated by removing a small number of edges. The special case in which the subgraph is a triangle is known as the triangle removal lemma.

References