Topology table

Last updated

A topology table is used by routers that route traffic in a network. It consists of all routing tables inside the Autonomous System where the router is positioned. Each router using the routing protocol EIGRP then maintains a topology table for each configured network protocol — all routes learned, that are leading to a destination are found in the topology table. EIGRP must have a reliable connection. The routing table of all routers of an Autonomous System is same.

Router (computing) Device that forwards data packets between computer networks, creating an overlay internetwork

A router is a networking device that forwards data packets between computer networks. Routers perform the traffic directing functions on the Internet. Data sent through the internet, such as a web page or email, is in the form of data packets. A packet is typically forwarded from one router to another router through the networks that constitute an internetwork until it reaches its destination node.

An autonomous system (AS) is a collection of connected Internet Protocol (IP) routing prefixes under the control of one or more network operators on behalf of a single administrative entity or domain that presents a common, clearly defined routing policy to the internet.

Related Research Articles

Interior Gateway Routing Protocol (IGRP) is a distance vector interior gateway protocol (IGP) developed by Cisco. It is used by routers to exchange routing data within an autonomous system.

Internetwork Packet Exchange (IPX) is the network layer protocol in the IPX/SPX protocol suite. IPX is derived from Xerox Network Systems' IDP. It may act as a transport layer protocol as well.

Routing is the process of selecting a path for traffic in a network, or between or across multiple networks. Broadly, routing is performed in many types of networks, including circuit-switched networks, such as the public switched telephone network (PSTN), and computer networks, such as the Internet.

Border Gateway Protocol (BGP) is a standardized exterior gateway protocol designed to exchange routing and reachability information among autonomous systems (AS) on the Internet. The protocol is classified as a path vector protocol. The Border Gateway Protocol makes routing decisions based on paths, network policies, or rule-sets configured by a network administrator and is involved in making core routing decisions.

Intermediate System to Intermediate System is a routing protocol designed to move information efficiently within a computer network, a group of physically connected computers or similar devices. It accomplishes this by determining the best route for data through a packet-switched network.

Network topology arrangement of the various elements of a computer network; topological structure of a network and may be depicted physically or logically

Network topology is the arrangement of the elements of a communication network. Network topology can be used to define or describe the arrangement of various types of telecommunication networks, including command and control radio networks, industrial fieldbusses, and computer networks.

Open Shortest Path First (OSPF) is a routing protocol for Internet Protocol (IP) networks. It uses a link state routing (LSR) algorithm and falls into the group of interior gateway protocols (IGPs), operating within a single autonomous system (AS). It is defined as OSPF Version 2 in RFC 2328 (1998) for IPv4. The updates for IPv6 are specified as OSPF Version 3 in RFC 5340 (2008). OSPF supports the Classless Inter-Domain Routing (CIDR) addressing model.

The Routing Information Protocol ('RIP') is one of the oldest distance-vector routing protocols which employ the hop count as a routing metric. RIP prevents routing loops by implementing a limit on the number of hops allowed in a path from source to destination. The largest number of hops allowed for RIP is 15, which limits the size of networks that RIP can support.

Enhanced Interior Gateway Routing Protocol (EIGRP) is an advanced distance-vector routing protocol that is used on a computer network for automating routing decisions and configuration. The protocol was designed by Cisco Systems as a proprietary protocol, available only on Cisco routers. Partial functionality of EIGRP was converted to an open standard in 2013 and was published with informational status as RFC 7868 in 2016.

A distance-vector routing protocol in data networks determines the best route for data packets based on distance. Distance-vector routing protocols measure the distance by the number of routers a packet has to pass, one router counts as one hop. Some distance-vector protocols also take into account network latency and other factors that influence traffic on a given route. To determine the best route across a network routers, on which a distance-vector protocol is implemented, exchange information with one another, usually routing tables plus hop counts for destination networks and possibly other traffic information. Distance-vector routing protocols also require that a router informs its neighbours of network topology changes periodically.

Link-state routing protocols are one of the two main classes of routing protocols used in packet switching networks for computer communications, the other being distance-vector routing protocols. Examples of link-state routing protocols include Open Shortest Path First (OSPF) and Intermediate System to Intermediate System (IS-IS).

A supernetwork, or supernet, is an Internet Protocol (IP) network that is formed, for routing purposes, from the combination of two or more networks into a larger network. The new routing prefix for the combined network represents the constituent networks in a single routing table entry. The process of forming a supernet is called supernetting, prefix aggregation, route aggregation, or route summarization.

The diffusing update algorithm (DUAL) is the algorithm used by Cisco's EIGRP routing protocol to ensure that a given route is recalculated globally whenever it might cause a routing loop. It was developed by J.J. Garcia-Luna-Aceves at SRI International. The full name of the algorithm is DUAL finite-state machine. EIGRP is responsible for the routing within an autonomous system, and DUAL responds to changes in the routing topology and dynamically adjusts the routing tables of the router automatically.

Dynamic Multipoint Virtual Private Network (DMVPN) is a dynamic tunneling form of a virtual private network (VPN) supported on Cisco IOS-based routers, Huawei AR G3 routers and USG firewalls, and on Unix-like operating systems.

Protocol-dependent modules (PDMs) are used by the routing protocol EIGRP to make decisions about adding routes learned from other sources; for example other routers or routing protocols to the routing table. In fact EIGRP has the capability for routing several different protocols including IPv4 and IPv6 using protocol-dependent modules (PDMs). The PDM is also capable of carrying information from the routing table to the topology table. EIGRP offers support for various routed protocols, and has added support for Service Routing (SAF) PDMs. The only other routing protocol that comes with support for multiple network layer protocols is Intermediate System-to-Intermediate System (IS-IS).

A routing loop is a common problem with various types of networks, particularly computer networks. They are formed when an error occurs in the operation of the routing algorithm, and as a result, in a group of nodes, the path to a particular destination forms a loop.

A routing protocol specifies how routers communicate with each other, distributing information that enables them to select routes between any two nodes on a computer network. Routers perform the "traffic directing" functions on the Internet; data packets are forwarded through the networks of the internet from router to router until they reach their destination computer. Routing algorithms determine the specific choice of route. Each router has a prior knowledge only of networks attached to it directly. A routing protocol shares this information first among immediate neighbors, and then throughout the network. This way, routers gain knowledge of the topology of the network. The ability of routing protocols to dynamically adjust to changing conditions such as disabled data lines and computers and route data around obstructions is what gives the Internet its survivability and reliability.

Convergence is the state of a set of routers that have the same topological information about the internetwork in which they operate. For a set of routers to have converged, they must have collected all available topology information from each other via the implemented routing protocol, the information they gathered must not contradict any other router's topology information in the set, and it must reflect the real state of the network. In other words: In a converged network all routers "agree" on what the network topology looks like.

Packet Tracer

Packet Tracer is a cross-platform visual simulation tool designed by Cisco Systems that allows users to create network topologies and imitate modern computer networks. The software allows users to simulate the configuration of Cisco routers and switches using a simulated command line interface. Packet Tracer makes use of a drag and drop user interface, allowing users to add and remove simulated network devices as they see fit. The software is mainly focused towards Certified Cisco Network Associate Academy students as an educational tool for helping them learn fundamental CCNA concepts. Previously students enrolled in a CCNA Academy program could freely download and use the tool free of charge for educational use.

An interior gateway protocol (IGP) is a type of protocol used for exchanging routing information between gateways within an autonomous system. This routing information can then be used to route network-layer protocols like IP.