Truncated tetrahedral prism

Last updated
Truncated tetrahedral prism
Truncated tetrahedral prism.png
Schlegel diagram
Type Prismatic uniform polychoron
Uniform index49
Schläfli symbol t{3,3}×{}
Coxeter-Dynkin CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png
Cells10:
2 Truncated tetrahedron.png 3.6.6
4 Triangular prism.png 3.4.4
4 Hexagonal prism.png 4.4.6
Faces24:
8 {3} + 18 {4} + 8 {6}
Edges48
Vertices24
Vertex figure Truncated tetrahedral prism verf.png
Isosceles-triangular pyramid
Symmetry group [3,3,2], order 48
Properties convex

In geometry, a truncated tetrahedral prism is a convex uniform polychoron (four-dimensional polytope). This polychoron has 10 polyhedral cells: 2 truncated tetrahedra connected by 4 triangular prisms and 4 hexagonal prisms. It has 24 faces: 8 triangular, 18 square, and 8 hexagons. It has 48 edges and 24 vertices.

Contents

It is one of 18 uniform polyhedral prisms created by using uniform prisms to connect pairs of parallel Platonic solids and Archimedean solids.

Truncated tetrahedral prism net.png
Net

Alternative names

  1. Truncated-tetrahedral dyadic prism (Norman W. Johnson)
  2. Tuttip (Jonathan Bowers: for truncated-tetrahedral prism)
  3. Truncated tetrahedral hyperprism

Related Research Articles

<span class="mw-page-title-main">4-polytope</span> Four-dimensional geometric object with flat sides

In geometry, a 4-polytope is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), and cells (polyhedra). Each face is shared by exactly two cells. The 4-polytopes were discovered by the Swiss mathematician Ludwig Schläfli before 1853.

<span class="mw-page-title-main">Uniform 4-polytope</span> Class of 4-dimensional polytopes

In geometry, a uniform 4-polytope is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons.

<span class="mw-page-title-main">Runcinated 5-cell</span> Four-dimensional geometrical object

In four-dimensional geometry, a runcinated 5-cell is a convex uniform 4-polytope, being a runcination of the regular 5-cell.

<span class="mw-page-title-main">Icosahedral honeycomb</span> Regular tiling of hyperbolic 3-space

In geometry, the icosahedral honeycomb is one of four compact, regular, space-filling tessellations in hyperbolic 3-space. With Schläfli symbol {3,5,3}, there are three icosahedra around each edge, and 12 icosahedra around each vertex, in a regular dodecahedral vertex figure.

<span class="mw-page-title-main">Truncated 5-cell</span>

In geometry, a truncated 5-cell is a uniform 4-polytope formed as the truncation of the regular 5-cell.

<span class="mw-page-title-main">Tetrahedral prism</span> Uniform 4-polytope

In geometry, a tetrahedral prism is a convex uniform 4-polytope. This 4-polytope has 6 polyhedral cells: 2 tetrahedra connected by 4 triangular prisms. It has 14 faces: 8 triangular and 6 square. It has 16 edges and 8 vertices.

<span class="mw-page-title-main">Cantellated 5-cell</span>

In four-dimensional geometry, a cantellated 5-cell is a convex uniform 4-polytope, being a cantellation of the regular 5-cell.

<span class="mw-page-title-main">Runcinated 24-cells</span>

In four-dimensional geometry, a runcinated 24-cell is a convex uniform 4-polytope, being a runcination of the regular 24-cell.

<span class="mw-page-title-main">Cantellated 120-cell</span> 4D geometry item

In four-dimensional geometry, a cantellated 120-cell is a convex uniform 4-polytope, being a cantellation of the regular 120-cell.

<span class="mw-page-title-main">Octahedral prism</span>

In geometry, an octahedral prism is a convex uniform 4-polytope. This 4-polytope has 10 polyhedral cells: 2 octahedra connected by 8 triangular prisms.

<span class="mw-page-title-main">Icosahedral prism</span>

In geometry, an icosahedral prism is a convex uniform 4-polytope. This 4-polytope has 22 polyhedral cells: 2 icosahedra connected by 20 triangular prisms. It has 70 faces: 30 squares and 40 triangles. It has 72 edges and 24 vertices.

In 4-dimensional geometry, a truncated octahedral prism or omnitruncated tetrahedral prism is a convex uniform 4-polytope. This 4-polytope has 16 cells It has 64 faces, and 96 edges and 48 vertices.

<span class="mw-page-title-main">Truncated dodecahedral prism</span> Convex uniform polychoron

In geometry, a truncated dodecahedral prism is a convex uniform polychoron.

In geometry, a rhombicuboctahedral prism is a convex uniform polychoron.

<span class="mw-page-title-main">Truncated cubic prism</span>

In geometry, a truncated cubic prism is a convex uniform polychoron.

<span class="mw-page-title-main">Truncated cuboctahedral prism</span>

In geometry, a truncated cuboctahedral prism or great rhombicuboctahedral prism is a convex uniform polychoron.

<span class="mw-page-title-main">Truncated icosahedral prism</span>

In geometry, a truncated icosahedral prism is a convex uniform polychoron.

<span class="mw-page-title-main">Order-6 tetrahedral honeycomb</span>

In hyperbolic 3-space, the order-6 tetrahedral honeycomb is a paracompact regular space-filling tessellation. It is paracompact because it has vertex figures composed of an infinite number of faces, and has all vertices as ideal points at infinity. With Schläfli symbol {3,3,6}, the order-6 tetrahedral honeycomb has six ideal tetrahedra around each edge. All vertices are ideal, with infinitely many tetrahedra existing around each vertex in a triangular tiling vertex figure.

<span class="mw-page-title-main">Triangular tiling honeycomb</span>

The triangular tiling honeycomb is one of 11 paracompact regular space-filling tessellations in hyperbolic 3-space. It is called paracompact because it has infinite cells and vertex figures, with all vertices as ideal points at infinity. It has Schläfli symbol {3,6,3}, being composed of triangular tiling cells. Each edge of the honeycomb is surrounded by three cells, and each vertex is ideal with infinitely many cells meeting there. Its vertex figure is a hexagonal tiling.

References